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Abstract

Server virtualization technology facilitates the creation of an elas-
tic computing infrastructure on demand. There are cloud applica-
tions like server-based computing and virtual desktop that concern
startup latency and require impromptu requests for VM creation in
a real-time manner. Conventional template-based VM creation is
a time consuming process and lacks flexibility for the deployment
of statefull VMs. In this paper, we present an abstraction of VM
substrate to represent generic VM instances in miniature. Unlike
templates that are stored as an image file in disk, VM substrates are
docked in memory in a designated VM pool. They can be activated
into statefull VMs without machine booting and application initial-
ization. The abstraction leverages an arrange of techniques, includ-
ing VM miniaturization, generalization, clone and migration, stor-
age copy-on-write, and on-the-fly resource configuration, for rapid
deployment of VMs and VM clusters on demand. We implement
a prototype on a Xen platform and show that a server with typical
configuration of TB disk and GB memory can accommodate more
substrates in memory than templates in disk and statefull VMs can
be created from the same or different substrates and deployed on to
the same or different physical hosts in a cluster without causing any
configuration conflicts. Experimental results show that general pur-
pose VMs or a VM cluster for parallel computing can be deployed
in a few seconds. We demonstrate the usage of VM substrates in a
mobile gaming application.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design,Distributed Systems

General Terms Management, Measurement, Performance

Keywords Virtual machine deployment, Data center, Virtual ma-
chine template, Cloud computing

1. Introduction

Cloud computing in its original form offers virtualized resources,
and infrastructure in general, as a service over the Internet. A
key requirement is resource provisioning on-demand in a real-time
manner. In the model of infrastructure-as-a-service, applications
are often run in virtual machines (VMs) and their performance
relies on effective management of the VMs in the whole life-cycle
from creation, deployment, execution, to termination. Because of
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the nature of on-demand computing, VM startup latency is a crucial
performance factor in application responsiveness, in particular for
those that interactive, impromptu, and short-lived computing [10].

An example of such applications is server-based computing
(SBC) [12], in which resource-constrained client applications of-
fload compute- or data-intensive tasks to VMs running in a data
center, e.g., through computation offloading or wrapping mobile
OS to VMs running in the cloud can significantly extends the com-
puting capability of mobile devices as well as saves the scarce bat-
tery resource. [3]. In such case, the VMs may need to be created
and deployed on the fly during the execution time of the applica-
tions. Another example is virtual desktop infrastructure (VDI) [25],
in which clients would launch their VMs associated with their per-
sonalized working environments and data on a remote client device
upon request. In addition, in virtualized parallel computing, the size
of a VM cluster varies with the workload which requires new VMs
worker can be created instantaneously. Startup latency is pivotal to
the success of all these cloud computing usage cases.

VM creation from scratch requires to create a virtual hard drive
image, configure virtualized resources, install OS and initialize
application services. This process would take tens of minutes. To
reduce the startup latency, in practice, public laaS providers like
Amazon Web Services provide users an option to create VMs from
template. A VM template [20, 26] is a reusable image created from
a clean VM and stored in disk as a file. Although a VM can be
created by booting from a template in tens of second, the template
become non-reusable by others. VM cloning from a template would
retain the reusability of the template but at the cost of expensive
disk copy of large image files. In either approach, there is no
time-efficient way to create multiple VMs simultaneously from the
sample template, although such parallel deployment is crucial to
parallel computing and server clustering.

There were recent studies on reducing the startup latency
and supporting parallel deployment of homogeneous VMs; see
Potemkin [27] and Snowflock [11] for examples. Potemkin pro-
posed a delta virtualization technique for flash VM cloning. It re-
lies a copy-on-write optimization technique to have multiple VMs
share memory pages as much as possible. Snowflock proposed a
process-fork like API to fork VMs for parallel processing during
the execution of a program. The VMs created inherit the software
stack from their parent VMs and can not exist without the presence
of their parents.

In this paper, we propose an abstraction of VM substrate as
an alternative to VM template for rapid deployment and parallel
deployment of VMs. VMs created from substrates have the same
life cycle as template-based VMs and the VMs are of indepen-
dent by origin and can be deployed across different physical hosts.
Unlike templates that are stateless and stored in disk as an image
file, substrates is a generic VM instance in miniature that docked
in memory of a designated machine in an inactive state. They can
be present with or without application footprints and ready to be



[ TemplateSize | 2G [ 5G | 10G | 120G |

cp(local disk) | 36.06s | 58.75s | 547.45s | 1228.69s
cp(nfs) 46.16s | 78.21s | 640.28s | 1412.42s
scp 43.31s | 114.66s | 749.97s | 1589.35s
dd(single disk) | 3.07s 45.55s | 195.71s | 515.17s

Table 1. Cost of creating VM from templates.

powered on upon request. Creation of VMs from substrates saves
time from time-consuming disk-based booting and deployment.
The substrate mechanism leverages an array of techniques, includ-
ing VM miniaturization, generalization, clone and migration, page
copy-on-write, and on-the-fly resource configuration, to save mem-
ory space, generalize substrate usages, and resolve resource config-
uration conflicts on VMs to be created. The mechanism facilitates
parallel VM deployment via multicast.

We have implemented a prototype on a Xen/Linux server cluster
and tested the system in two scenarios: on-demand deployment of
VMs for cloud-assisted gaming and parallel deployment of hetero-
geneous VM clusters like LAMP (Linux/Apache/MySQL/PHP).
Experimental results showed the mechanism capable of creating
VMs in subsecond, while retaining the flexibility of VM resource
configuration. The experiment results also show that the substrate
mechanism makes it possible to deploy a VM cluster in a few sec-
ond or a speedup of more than 50 times in comparison with default
VM deployment from template.

The rest of this paper is organized as follows. Section 2 gives
background information about VM lifecycle and in particular the
cost sources of VM creation. Section 3 presents the concept of
substrate, substrate pool, and revised VM life cycle due to the use
of substrate. Section 4 presents implementation details and results
from micro-benchmark testing of key implementation issues. Eval-
uation results of the system as a whole are discussed in Section 5.
Section 6 discusses related work. Section 7 concludes this paper
with remarks about future work.

2. Background

Deployment of a VM in a data center involves a number of steps:
(1) VM creation with virtual hard disk; (2) Installation of OS im-
ages and applications; (3) Deployment with configuration (net-
working, etc) on selected host/cluster; (4) VM startup.

New VMs can be created either from scratch or from template.
As the process of VM creation from scratch takes tens of minutes,
it is rarely used in cloud. On the other hand, deploying a VM
from templates, which removes the process of OS and software
installation, is widely used in practice. VM creation from templates
involves two steps: (1) create a copy of the template’s virtual
disk image and (2) customize the VM configuration as needed.
Configuration customization includes parameter settings for boot
option, host name and network. VMs can be created from templates
through either cloning or conversion. VM templates are usually
created for a specific purpose such as a web server or a database
server. Once booted, the VM which originates from a template can
be further extended by deploying more applications or run-time
libraries. In the following, we first discuss the cost of VM creation
and then examine the state transition of a VM. Next, we present the
challenges of fast VM deployment.

2.1 Cost of VM creation

The cost of template-based VM creation comes from different
sources. First, depending on the storage environment and VM tem-
plate image size, the cost of VM disk duplication varies. In or-
der to support VM live migration [4], VM disk images are usually
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Figure 1. VM State Transition.

stored in centralized storage servers. NFS and iSCSI are two popu-
lar choices for the deployment of VM virtual disks. In either case,
the duplication of the template’s disk image is necessary for a new
VM creation. Table 1 shows the cost of disk duplication with dif-
ferent disk sizes and different methods. Regardless the underlying
storage organization and duplication methods, the cost increases
significantly with the VM disk size. A 5GB VM disk requires more
than one minute to be copied. The latency incurred by disk duplica-
tion is not acceptable to interactive applications. Besides, accord-
ing to the table, to clone a new VM from a template on remote
host (scp) takes tens of seconds or even a few minutes, consuming
a significant amount of network bandwidth in the data center. Note
that although create a blank disk image on local disks (dd) takes
less time, but deploying root filesystem takes even more time than
directly duplicate a disk VM with root filesystem as a whole. Sec-
ond, the booting process of a VM includes booting the kernel and
starting default services. Kernel booting usually takes sub-seconds
while starting different services is both error-prone and costly. The
general purpose OS installation activates many services by default.
RightScale [22] templates and Oracle VM templates [20] disable
most of the application unrelated services to minimize the cost.
Third, traditional JeOS templates are usually extended by installing
more applications to generate new application specific templates.
The cost of maintaining various VM templates increases with the
diversity of application oriented templates. All these costs together
makes template based VM creation impractical for interactive ap-
plications.

2.2 VM state transition

Starting from a template, a VM experiences multiple states in its
life cycle. Figure 1 shows state transition diagram for a VM. Each
VM is initially halted after being created from scratch or cloned
from templates. Although each halted VM is a static instance only
consuming disk space, it still can be edited or customized by in-
stalling new applications or changing the associated configuration.
A VM s changed to a running state when it is started and A VM can
be paused or suspended on local host or migrated to another host.
We added one additional state and two new actions to the conven-
tional VM state diagram [20]. A new substrate is generated from a
running VM through docking. Docking can be done by converting
or checkpointing. Converting puts the running VM to an inactive
state, while checkpointing keeps the VM running. The tradeoff be-
tween these two solutions are discussed in substrate design section.
Note that an inactive state is different from a halted state. An in-
active VM consumes memory and maintains running status, but a
halted VM only consumes disk space.

2.3 Challenges of rapid VM deployment

Rapid VM deployment calls for minimal costs in each step of
VM creation. However, as discussed above, virtual disk image
duplication is time-consuming. It leads to a large startup latency.



Moreover, if multiple VMs need to be created at the same time,
disk duplication is the key impediment to fast VM deployment.
In addition, the automatic resource reconfiguration of new VMs is
also challenging, especially in a heterogeneous virtualized cluster
of VMs with interactive applications.

Stateless VM creation has limited usage cases due to the fact
that it creates brand new VM every time without preserving run-
time environment or intermediate result. A brand new VM with
necessary applications pre-installed is how the general VM tem-
plate is used. This is insufficient for many of the cloud applications
like parallel computing or mobile computation offloading. Thus the
fast creation of statefull VMs is necessary.

Rapid VM deployment also requires that the creating process
should be transparent to users and applications. Because creating
a new VM always takes time, in the cases of user interactive
applications or other request-driven VM creation, startup latency
caused by creating a new VM must be small enough so as to
make the creating process transparent to application. If the cost of
creating process is negligible, from applications’ perspective, VMs
are always ready for use.

3. Design of VM substrate

Modern applications and libraries consume a considerable amount
of disk space, which makes the size of templates usually large.
To address these limitations, a few questions need to be answered.
First, can image file be stored in memory instead of disk? Although,
solid-state-disk(SSD) attempts to increase the efficiency of data
transfer between disk and memory, it is still not fast enough to meet
the requirement of duplicating disk image on demand. Moreover,
the size of traditional templates can easily go beyond the limitation
of the memory of a server or a common SSD. Thus it is imprac-
tical to maintain templates in memory and only a limited number
of templates can be saved on SSD. Second, is it possible to avoid
the booting process while still maintaining previous running states
when starting a VM? An AMI [6] or oracle VM contains a minimal
Linux installation with only essential Linux services, leaving the in-
stallation of additional applications to package management tools.
Thus the images are much smaller than default Linux OS installa-
tion. However, it is a brand new OS with only a limited number of
services installed. Third, is it possible to deploy a VM in a real-time
manner? Real-time VM deployment allows VMs to be created on
demand and only be activated when in use. In the remaining sec-
tion, we elaborate the design of VM substrate and compare VM
substrate with alternative approaches.

3.1 VM substrate and pool

The design of VM substrate aims to leverage existing virtualization
techniques to provide an agile cloud computing environment which
allows users to create VMs or VM clusters on demand. A VM
substrate is a static reusable instance that can be duplicated or
reactivated for later use. VM substrates are categorized into three
types. Public substrates contain minimal clean JeOS and generic
configuration. Restricted substrates are the extensions of public
substrates with specific applications and run-time environment.
Alternatively, private substrates include users’ personal data which
can only be reused under strict sharing policy. These types of
substrates are designed for different use cases, but they follow the
same docking and reactivating process.

Saving the running states of VMs into in-memory VM sub-
strates has many advantages over having VMs always run in full
capacity. If a VM in full capacity is paused or suspended to the local
machine, the resulted memory footprint which contains the VM’s
running state is usually quite large, in proportion to the VM’s orig-
inal capacity. If the saved state is stored in local machine’s mem-
ory, the restarting of the paused/suspended VM is instant but at
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Figure 2. Create VM from substrate.

a cost of wasted memory resources which can be otherwise used
by other running VMs. If the state is saved on local hard disk, the
time required to resume the VM is unacceptable. For example, it
takes approximately 40 second to restore a VM with 2 GB memory
from a 7200RPM SATA disk. In VM substrates, we first trim the
VM to its minimal capacity (minimal CPU and memory, detached
block and network devices) that preserve essential running states,
and then temporarily dock the VM to memory other than disk. After
the final compression, the resulted memory footprint which usually
in a size of tens of megabytes is transferred and consolidated to a
dedicated substrate pool. Upon resuming, the corresponding VM’s
substrate is activated by expanding to its real capacity. The restora-
tion latency is comparable to the local in-memory restore but with
a much less memory cost on each local host.

A substrate pool is a centralized repository where all the sub-
strates are maintained. Unlike traditional VM template pool, The
substrate pool stays mainly in memory and the backup substrates
are stored on disk. The size of a substrate pool is dynamically re-
configurable without affecting the existing substrates. Our prelim-
inary experiment results show that a substrate with minimal pro-
gramming environment can be as small as 16MB. With the similar
substrate, we successfully hosted several hundreds of substrates on
a physical machine with a 4GB memory. However, the sizes of the
substrates depend on the running status of the hosted application.
In order to maintain a statefull substrate with manageable cost, we
aim to embed only necessary data into a substrate.

VM substrate is proposed to be an alternative effective VM ad-
ministration solution not only applicable to instant parallel workers
creation, but also applicable to standalone VM deployment, also
taking the reusability and scalability into consideration. Different
from VM Descriptors proposed by Snowflock [11], VM substrate
doesn’t have heavy dependancy on any parent VM and has many
varieties. VM Descriptors contain only the minimal critical meta-
data needed to start execution and use Memory-On-Demand mech-
anism lazily fetch portions of VM sate over network as it is ac-
cessed. In contrast, VM substrates are static VM abstraction resides
in a pool in memory. Activation, resource expansion and remapping
are the typical three steps to create a new VM from a substrate. In
theory, it is possible to maintain a pool of template parent VM and
then fork child VMs on demand. However, this solution can hardly
get rid of the limitation of dependancy and hard to meet the require-
ment of VM creation for long standing services. Moreover, due to
the size of the parent VM, the cost of maintaining template parent
VMs is much higher than maintaining a substrate pool. In addition,



if the application is CPU intensive and requires minimal updates
to disk or the intermediate results can be discarded, an alternative
way to VM fork is to start multiple VMs on different hosts with the
same disk image located on a centralized server. But this solution
has very limited usage cases.

The abstraction of VM substrate introduces two VM state trans-
fer actions in the life-cycle of a VM which are docking and activat-
ing. A VM substrate is constructed by docking a running VM main-
taining applications’ running status. There are two ways of dock-
ing: intrusive converting of a running VM and live checkpointing
of a VM. In contrast, VM substrate activating includes dispatch-
ing substrate, launching substrate and reconfiguring substrate’s re-
sources. A new VM is created after the activating process.

3.2 VM clone from substrate

We employ four steps to address the challenges in on-the-fly VM
creation. First, VM miniaturization and generalization. Before gen-
erating new VM substrate, the parent VM is shrunk to a minia-
ture state. A VM substrate has minimal memory footprint, single
vCPU core, detached network interface and reference to virtual
disk. Since the memory size is a major factor of the final size of
a VM substrate, the memory size needs to be shrunk to the great-
est degree through either intrusive shrinking or live checkpointing.
In either case, the data in the system cache is synchronized to disk
first. Through predictive calculation, we reconfigure VM’s memory
to a size that only contains data necessary for the restoration. VM
configuration generalization assures the VM specific configuration
of public or restricted VM. Configurations such as host name, net-
working parameters are reset to the default value. The resources
of a private VM substrate is minimized while still maintaining its
original configuration. Second, raw VM substrate is generated right
after the VM’s resource shrinking. A snapshot of the minimal run-
ning VM is created and stored in local memory. Third, raw sub-
strates are compressed to be the final VM substrates before they
are moved to a substrate pool. Compression reduces the substrates
to a size as small as tens of megabytes which can be transfered over
WAN. Fourth, the minimal VM substrate on local memory is trans-
fered to a centralized pool. Figure 3 illustrates the steps of docking
arunning VM to a substrate.

When a substrate is selected to create a new VM, as shown in
Figure 2, it is duplicated to other physical hosts simultaneously via
multicast. Each physical host then decompresses the VM substrate
and activates it from memory. Through reconfiguration, newly cre-
ated VMs on each host will be allocated more memory and vCPU
resources depending on application needs. New network interface
with predefined parameters is attached to the VM and the config-
uration takes effect immediately. Depending on the type of a sub-
strate, root disk is remapped and user’s personal disk partitions can
be attached to the VM.

3.3 VM substrate generation

Converting a VM to a substrate starts with reconfiguring a running
VM’s resource to minimal memory footprint and vCPU number,
detaching the network card and saving the disk states. The initial
VM from which a substrate is constructed can be a VM template
or any VM with applications running. Intrusive conversion can be
initiated in the application level by administrators whenever the
VM has no scheduled work and is ready to be docked.

A VM substrate can also be created through live checkpoint-
ing in system level. VM checkpointing has been widely used for
various purpose like high availability [5], VM migration [2, 4, 16,
28].fault-tolerant [15] or debugging [8]. We also leverage check-
pointing to create VM substrates without interrupting the running
services. Most of existing VM level checkpointing techniques tend
to save the entire running states(cpu,memory,disk) in a core dump
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Figure 3. VM dock to substrate.

where the resulted checkpoint size is the VM’s memory size, and
the checkpointing time is closely related to memory page dirty rate.
We employ two techniques to ensure that a VM can be correctly
restored from a substrate and the size of the resulted substrate is
minimized. First is selective memory checkpointing, through which
only reusable memory pages are saved to substrates, discarding the
reconstructable or zero pages. Selective checkpointing memory is
able to reduce the size of raw substrates considerably. Second is
the generalization of VM configuration, which set all VM specific
resource identifiers likevmid or uuid to default values in a VM sub-
strate. By using these two techniques, a checkpointing substrate of
existing running VM instance can be created any time without con-
flicting with the original VM.

Compared with intrusive conversion, live checkpointing is able
to create VM substrate without interrupting user applications, but it
requires the modification of the VMM for selective memory dump-
ing. In contrast, application level substrate conversion is indepen-
dent on the underlying VMM. It only requires that virtual hardware
resources of a guest VM can be configured dynamically without a
restart.

3.4 VM fork

We note that VM fork has been recently proved to be an efficient
way to clone a parent VM to multiple copies swiftly[11, 27]. Sim-
ilar to process level fork, VM fork allows a child VM to inherit
all the states originated from its parent VM prior to forking, en-
abling creating statefull computing instance rapidly. However, dif-
ferent from process fork, VM fork is capable of creating VM clones
across a set of physical hosts. It can also work in a parallel manner
where a single API call launches multiple VMs. Each child VM
has its own independent copy of resources and runs independently
from the parent VM. Once forked, and the changes made to each
cloned VM are maintained separately. We analyze the advantages
and the disadvantages of VM fork and compare it with VM dock
and reactivate in the remaining of this section.

VM fork is capable of creating transient VMs whose virtual re-
sources are discarded once they exit. The intermediate states or val-
ues generated by the applications in a child VM are lost unless be-
ing explicitly synchronized to the parent VM. Due to the character-
istic of a fork operation, VM fork has a few limitations. First, VM
fork is applicable to computation intensive applications with lim-
ited or disposable intermediate results. Existing VM fork leverages
disk Copy-On-Write(COW) techniques to offer each child VM a
COW slice of disk and all the disk updates or intermediate values



are preserved on the COW disk. The child VMs share the running
environment of the parent VM and the coordination between the
parent and the children is mainly limited to computation. In the
case of 10 intensive applications, each child VM needs to make
changes to their own disks which are actually COW slices. When
the tasks in children VMs finish the updates on each child may need
to be synchronized back to the parent. The integration of the up-
dated data to the base disk incurs significant cost. It is challenging
to achieve consistent synchronization once several VMs changed
the same data. Second, sharing the same base disk partition be-
tween parent and children VMs limits the scalability of VM multi-
plexing. With IO intensive applications, the disk bandwidth of the
base partition can easily become the performance bottleneck. Al-
though multicast can be used to render memory pages concurrently
to all the children VMs and memory page prefetching can possi-
bly speed up on-demand paging, VMMs like Xen only grants the
privileged domain direct access to the devices and does not allow
the guest domains to access them directly [7, 19]. If the number of
child VMs that request missing pages is large, the parent VM would
receive a considerably amount of page requests from network inter-
face. The parent VM can possibly become a hot-spot. Third, cur-
rent VM fork implementation remains at application level focusing
on parallel applications which need to re-spawn additional tempo-
rary workers. However, VM fork is not ideally suitable for deploy-
ing longstanding independent VMs at cloud administration level.
Server applications such as web hosting and database warehousing
usually run in loose coupled virtual clusters with minimal corre-
lation. Such applications often require persistent data storage for
each virtual node. Another drawback of the VM fork mechanism
is its inability to create a heterogeneous VM cluster at a time. The
VM substrate approach proposed here tries to create a cluster of
heterogeneous VMs in a real time manner.

4. Implementation

We have implemented our VM substrate pool mechanism on
the Xen platform. Xen is capable of running two leading ap-
proaches for virtualization: para-virtualization(PV) and full vir-
tualization(FV). FV is designed to provide total abstraction of the
underlying physical system, in which guest OS or applications
are not aware of the virtualized environment. However, it incurs
much performance overhead and can not be reconfigured on the
fly without reboot of the VM. In contrast, PV presents each VM
an abstraction of the hardware and requires modification of OS, al-
lowing near-native performance. The memory size and the number
of vCPUs of a PV guest VM can be reconfigured without restarting
the VM. Thus, we select PV VMs in our prototype implementation.
Our implementation includes modifications to the hypervisor, the
libxc library, and the xend management daemon. In the remain-
ing of this section, we elaborate the implementation details and
compare them with alternative approaches. We also present micro-
benchmark results to show the feasibility and effectiveness of the
VM substrate.

4.1 Resource shrinking and expanding

vCPU: vCPUs are what the guest sees as CPUs on which the guest
OS schedules applications processes or thread. The final size of a
VM substrate is not affected by the number of vCPU configured in
a VM. In order to make each substrate be more generic and with
minimal resources, each VM substrate has an default configuration
of a single vCPU core. In practice, vCPUs are usually pined to
specific physical CPUs for predictable performance. VM substrate
is designed to be a generic mechanism that does not assume any
physical host information. Thus, CPU affinity information is not
maintained in the substrate. In a heterogeneous cluster, a VM sub-
strate with a single vCPU is able to be deployed on any physical
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machine. Since Xen VMM does not allow the actual vCPU num-
ber to exceed the maximal number of vCPU specified in the guest’s
configuration file, we set the default maximal number of vCPU to
be the total number of physical CPU cores for each substrate. Any
newly created VM initially has single CPU core by default. More
vCPUs can be allocated at a step of one vCPU.

Memory: Xen VMM is responsible for managing the allocation
of physical memory to guest domains and maintaining a triple in-
direction model(virtual memory, pseudo physical memory and ma-
chine memory). Each VM runs in an illusory flat, continuous ad-
dress space. Xen reserves the top 64M of the virtual address space
for every domain. The remaining physical memory is available for
allocation at a granularity of one physical page. Xen maintains
a globally readable mapping table between PFN(Pseudo-physical
Frame Number) and MFN(Machine Frame Number). The OS run-
ning in a VM maintains the mapping between virtual memory and
pseudo physical memory. As shown in Figure 4, each VM’s phys-
ical memory is part of the machine memory and can be divided to
several parts including used pages and unallocated free memory.
The used pages can be further divided into static memory pages
and dynamic memory pages. The later one also includes disk cache.
Note that although the used pages are not available for reallocation,
it is still possible that some of those pages are zero pages either be-
cause they are set to zero by programs or they are used as heap
initialized by compiler. Traditional VM save xen save writes the
VM'’s entire memory including zero pages, cache pages and free
pages to a checkpoint file. Including free and zero pages in the
checkpoint file is likely to be a waste because those pages store
no information of the checkpointed states. In order to minimize the
size of a VM substrate, we only keep the reusable and minimal
memory footprint while still maintaining the integrity of a VM’s
state.

A VM substrate which excludes free pages does not harm the
correctness of VM when it is relaunched because those free pages
can be easily reconstructed by manipulating the mapping table of
MEN and PEN. Zero pages are still included in a VM substrate for
the following reasons: First, there is no more efficient way to extract
zero pages other than doing a bit by bit comparision. The cost rises
as the size of VM memory increases. Second, each VM substrate
is compressed before going to a substrate pool, the compression
algorithm is capable of compressing the zero pages with a large
compression ratio which reduces the size of the substrates consid-
erably. Note that disk cache is used for performance optimization
where recently accessed data can be retrieved from memory with-
out incurring disk 10. Before creating a public or a restricted VM
substrate, disk cached pages are synchronized to the disk which
yeilds more free pages and the final substrate size can be further
reduced.

Most of existing Linux distributions enable many optional ser-
vices by default even for a base installation. Rightscale[22] uses
bash scripts to disable those optional services before building a
template. In addition to kicking off disk cache pages, we also re-
lease part of the memory occupied by killing user applications that



are not relavent to the main purpose of the substrate. For exam-
ple, in a substrate dedicated for web hosting applications, optional
services like sendmail, nfs can be removed. We customize the ap-
plication level services before docking a VM.

Memory ballooning is used by VMMs like Xen to achieve mem-
ory over-commitment. It provides the ability for the sum of the
physical memory allocated to all active domains to exceed the to-
tal actually physically available memory on the system. Recent dy-
namic memory balancing work [29] proposed mathematical models
to forecast memory needs and dynamically adjust the memory for
VMs. The objective of these two memory adjustment approaches is
to improve memory utilization. The later one also considers appli-
cations’ throughput and performance. It is possible to instrument
Xen to track memory accesses with each VM through the use of
shadow page table. Shadow page tables are enabled during Xen’s
VM migration to determine which pages are dirtied during the mi-
gration. However, trapping each memory access results in a signif-
icant application slowdown and is only acceptable during migra-
tion [4, 23].

After a new VM is created from a VM substrate, it will start
running at the initial state with minimal memory. It later expands
to a larger size according to the setting in the configuration file.
Each VM has a maximum and current memory size. Current mem-
ory size can be adjusted up to the maximum size. We configure
the maximum memory of each substrate to be the physical memory
size. The total memory size is extended dynamically. We imple-
ment an application level memory shrinking mechanism which is
used to convert a VM to a substrate based on simple speculation
in our prototype. We use the Linux /proc interface (in particular
/proc/meminfo ) to analyze the memory usage. Before docking
a VM, we first kick all the cached data back to disk and consider the
remaining memory size being actively used. Then we determine the
minimal amount of memory the VM needs by adding a safe margin
preventing Out-of-Memory crashes when the VM is restarted from
substrate. The VM is set to the resulted memory size. The mem-
ory footprint of a guest VM will directly influence the final size of
the VM substrate. The effect will be evaluated at the end of this
subsection.

Network: The privileged domain in Xen VMM implements the
network interface driver and all other guest domains access the
driver via virtual device abstractions. Each domain is attached one
or more virtual interfaces. Due to the fact that virtual interfaces are
not necessary for booting a VM, their configurations can be post-
poned until rest of the guest OS ready to work. Conventional mi-
gration keeps network connection status by maintaining all protocol
states and keeping IP addresses and MAC addresses in a record. Ex-
isting solutions used to manage network configuration during mi-
gration are to generate an unsolicited ARP reply form the migrated
host, which lets the switch and other hosts know that the MAC is
connected a new port [4]. However, even if the switch is configured
not to block ARP broadcast, conflicts still exist if multiple VMs are
created from the same substrate because all the network configu-
rations of the new VMs are originated from the same substrate. In
order to avoid the conflicts, We detached the network interface be-
fore docking a VM and VMs created from substrates do not have
network interfaces initially.

The network parameters are configured when a new network
interface is attached to a VM. In our prototype implementation,
we also developed a mechanism to isolate the network in order to
prevent interference between unrelated VMs. First, the networking
mode (NAT,bridge or routing) can be dynamically configured with
an interface in a physical host. Besides, the IP, MAC addresses
and even the network mode can be determined within a physical
host and transfered to guests as parameters. We implemented guest
network configuration mechanism based on Xenstore to provide

agile and immediate configurations. Depending on the purpose of
newly created VMs. Especially when a virtual cluster is created,
they are deployed with private network addresses and only guests
within the same subnet are visible to each other.

A VM substrate is the snapshot of an original VM, and the mem-
ory and process running status are preserved in the substrate. This
may result in some conflicts if new VMs are created based on one
VM substrate because they share the same running environment. It
is possible that multiple processes in different VMs may need to
connect to the same socket or open the same file. In our prototype
implementation, docking VM can be done at administrative level
when one phase of computation is finished or before the applica-
tion starts to run. Another solution is to create a substrate directly
from a running template.

Disk: Disk image files are commonly used as virtual disks by
guest VMs. Because the disk image files, which are usually in a
size of tens of Gigabytes, stores the application specific data, costly
disk duplication is often unavoidable if new VMs are to be created.
Existing template-based VM creation simply distributes the virtual
disk image in a copy-and-paste manner to reconstruct the same VM
without reinstalling OS or applications. Thus any two VMs from
the same template are independent from each other, guaranteeing
the isolation of VMs. However, the time spent on copying virtual
disks is unacceptable provided that the disk size is usually large.
Disk copy-on-write is often used to avoid unnecessary disk space
waste. Multiple COW slices can share the same read-only base
image file and all the updates are directed to those COW slices.
Wide-area VM migration used disk COW to transfer VM disk
state over low bandwidth and high-latency links [9, 23]. To reduce
the startup latency of new VMs, disk COW is also used recently
by Snowflock [11] and Potemkin [27] to generate temporary disk
slices for newly created VMs.

There are two different types of disk COW. Frist, a blocktap
driver combined with a gcow slice, which is supported by Xen
VMM. Second, LVM supports creating writable snapshots of log-
ical volumes quickly and each snapshot can be used as a COW
disk slice by guest VMs. However, both of these two approaches
have their limitations. Traditional gcow based COW has a limit on
the total number of slices created and also has to make the trade-
off between the size of the COW disk and the depth of the COW
disk hierarchy. Deeper hierarchy leads to bigger image files. Fig-
ure 5(a) and Figure 5(b) illustrate two typical ways to create a COW
disk partition. The linear COW approach in Figure 5(b) applies in-
cremental COW slices onto existing disk partitions. The existing
disk partition can be an initial base partition or a partition already
having COW slices on it. The vertical hierarchy as shown in Fig-
ure 5(a) dedicates a VM to a single purpose with fewer applications
installed, thus it is able to limit the resulted partition size to a cer-
tain extent. In order to avoid the high The root COW disk is the
initial image file and usually installed with the JeOS, then multiple
child COW disks are created afterwards with each taking the previ-
ously created root COW as its parent and install with different kind
of application. Due to the IO scheduling of virtualized disks, more
COW slices result in higher dependency and the more degradation
of the performance in either mode. Moreover, it is very challeng-
ing to merge multiple COW slices to the base image because the
order of updating disk file is usually not preserved. On the other
hand, LVM snapshots usually apprear as a physical partition and
requires using tools like ATA over ethernet(AoE) or iSCSI[14] to
export COW slices when VMs need to be deployed across multi-
ple hosts. Each new slice requires an update to the running AoE or
iSCSI service to export a new disk partition. In addition, only re-
cent LVM version supports merging a COW back to the base and it
also needs to use the latest Linux kernel. In conclusion, disk COW
slice is only applicable to temporary VM creation.
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Xen disk block device supports split driver model and the VMM
provides a mechanism for device discovery and data movement be-
tween domains. The device drivers are split across Domain 0 and
guest domains which are also called back-end and front-end respec-
tively. Domain O is responsible for supporting hardware, running
back-end devices drivers and providing the administrative interface
to Xen. This VM disk model allows that a VM’s disk can be re-
configured. We leverage COW techniques for substrate-based VM
deployment with some modifications to the existing COW mecha-
nism. The objective of real time VM creation are two folds. First,
in the long run, VM substrate-based VM creation should guaran-
tee the correctness and should generate consistent application re-
sult compared to the VMs created from templates. Second, from
the users’ perspective, a VM can be created on the fly in a real time
manner with small latency. Inspired by [17], We create a temporary
COW slices and remap it to a newly created VM from substrate,
giving users near realtime responses to the VM creation requests.
The temporary COW slices work as the root partitions in order to
speed up the booting process. At the same time, we duplicate the
base image in the background. Once duplication of the base image
finishes, instead of merging COW slice back to the original base,
we merge the COW slice to the duplication of the base, removing
the dependencies between the parent’s base image and children’s
COW slices. We changed existing gcow to work as a buffer of disk
updates supporting dynamically merging to any duplicated copy of
its original base. Thus, the time-consuming disk duplication can be
hidden as a background job. An externally synchronous file system
has been proposed by Edmund et al. [17] to amortize modifications
across a single commit where only external output will trigger file
modifications to be committed. Similarly, our COW slice can be re-
garded as the buffer of modifications, the commit will be triggered
when the duplication of base image is done. Figure 5(c) shows the
synchronization of disk IOs when a new VM is created from a sub-
strate. Each VM is assigned a COW slice initially, but will have its
own independent disk partition in the long run. Step 1 groups mul-
tiple modifications before committing the changes to the disk. Step
2 and step 4 represent retrieving data from the base image and the
COW slice respectively. Step 3 and Step 5 show that disk changes
are synchronized to the COW slice. When a request of creating a
new VM is received by a cloud manager, the duplication of the
base image file is started as a background job. Other than synchro-
nizing the COW slice to original base image, we synchronize the
changes to new base image which is shown in step 6. After merg-
ing COW slices to the new base image. VM starts to read and write
data directly from and to the new image as shown in step 7 and
step 8. After step 8, the VM creation process finishes and the VM
works just as the VMs created from a static templates. Note that the

VMs created from substrates are online whenever the COW slices
are ready (step 1), which gives almost real time responses to users’
requests. In practice, the intermediate COW slices turn to be very
small after merging, thus can be discarded with minimal cost. The
original base image still remains reusable.

Evaluation. To understand the impact of shrinking degree on
generating VM substrates and reactivating substrates, we shrunk a
VM’s memory from different sizes. We experimented with various
memory sizes from 128M to 2GB and verified the time spent on
preparing raw VM substrates and the time reactivating them. All
the cached data was synchronized back to disk before docking.
As shown in Figure 6, the sizes of a raw substrate are slightly
larger than the memory footprint. If VM’s memory can be shrunk to
around 128M, the docking or reactivating can be done within 0.875
seconds. In our test, a VM with some applications like Webserver,
MySQL database or program development environment installed
could further be compressed, leading to a final VM substrate as
small as 16MB.

4.2 Substrate multicast and compression

In our prototype implementation, we use multicast to dispatch VM
substrates in parallel to other physical hosts. Traditional point-to-
point communication has the drawback of inefficiency if a substrate
needs to be sent to multiple hosts simultaneously. The transferring
of VM substrates consumes considerable network bandwidth. In
order to make sure that all the VM substrates are only transfered
within the data center, we set the time-to-live (TTL) value of all
multicast packets to be 1. Since the size of VM substrates can be
as small as 16MB, the multicast packets can be encapsulated into
the payload of TCP packets and can be sent quickly to another
node in a LAN environment. Due to the small footprint of the
substrates, our current implementation can alse be extended to a
WAN environment connecting different data centers.

The raw VM substrates are compressed before moved to a pool.
The objective of the compression is to make each VM substrate
as small as possible. In our prototype implementation, we used
the gzip algorithm to compress raw VM substrates. In order to
reduce the cost of compression, the compression is done in memory
and the resulted compressed substrates are also stored in memory
temporarily before they are moved to the substrate pool. In our
experiment, a VM with a development environment installed leads
to a size of 16MB after compression. Compression of a substrate is
more costly than decompression. Decompression usually takes less
than half of the time than compression. The small cost incurred
by decompression further speed up the launching process of a VM
from the substrate pool.
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Evaluation. To evaluate the effectiveness of multicast, we com-
pared the time spent on deploying multiple VMs from the same
VM substrate. Figure 8 shows the strength of multicast, especially
when the number of clones increases. In this experiment, we sent
two different substrates with sizes of 25MB and 1GB to different
physical hosts in order to create a group of new VMs. As shown in
Figure 8, multicasting a 25SMB substrate to different hosts took less
than 1 second while sending the 1GB substrate took around 30 sec-
onds. These are two extreme cases. In the more general case, VM’s
memory should be able to be shrunk to between 128MB and 1GB,
most VMs with barely application environment installed could be
shrunk to less than 200MB memory. Thus, the total time on multi-
cast is in the magnitude of several seconds. On the other hand, in
the case of unicast without using multicast, the total time of send-
ing the substrates to the others would increase with the number of
required clones. Figure 8 also plots the time of propagating the VM
substrate by duplicating the saved state in a networked file system
(NFES).

We also evaluated the cost of compression and decompression
on the VM startup latency. We compared the time spent on con-
version between raw substrate and final substrate when the size of
raw substrate varied from 128MB to 2048MB. As shown in Figure
7, compression is more costly than decompression. The final size
of each raw substrate is shown in the figure. For a raw substrate
of 256M, which is the size for a typical VM after selective mem-
ory dumping, the decompression only took about one second. The
startup laterncy incurred by the decompression algorithm does not
significantly affect the users’ experiences. Although compression
is time consuming especially for large size of raw substrates, the
compression is usually done before docking to prepare new VM
substrate for future use which does not affect VMs’ startup.

5. Evaluation

In this section, we examine the overhead and design a set of ex-
periments to verify the effectiveness of VM substrate. We begin by
examining the overhead of using a substrate to create new VMs,
and then go on to explore one typical usage case of offloading mo-
bile computation to a cloud environment. At the end of this section,
we compare the cost of launching a VM with different methods.
The machines used in the experiments consist of a server ded-
icated to the VM pool and a client machine. All the experiments
were conducted in a LAN environment connected by a Gigabit Eth-
ernet switch. The physical hosts for the VM pool is a Dell Pow-
erEdge 1950 server with two quad-core Intel Xeon CPU and 8GB
memory. The client machine is a PC with dual CPU cores. We used
Xen version 3.4.1 as our virtualization platform. Both dom0 and
the guest VMs were running CentOS Linux 5.3 with kernel 2.6.18.

5.1 Overhead

We began our evaluation by examining the overhead of VM sub-
strate. We study the latency of preparing a VM or VM cluster on

Figure 7. Compression cost.

Figure 8. Effectiveness of multicast.

demand. Figure 9 draws the time needed to create different number
of VMs through VM substrate pool. In this experiment, we pre-
pared several different VM substrates for each type of applications.
Whenever a new VM is needed, in order to minimize the time spent
on preparing virtual disks, we created a new VM using a temporary
COW slice. The root partition of each VM is 4GB and the partition
which is used to store the modification is set to 1GB.

In this experiment, we created different numbers of VMs from
the same VM substrate and evaluated the absolute cost. The mem-
ory size of a raw substrate in this experiment was shrunk to 118MB,
leading to the final compressed substrate of 16MB. This is the
smallest size we can achieve with minimal installation of the guest
OS and necessary running environment. We intend to answer the
following questions in this experiment: (a) What is the optimal
speedup VM substrate can achieve? (b) Where is the time spent
on VM creation? (c) What is the scalability of the VM substrate
approach?

Figure 9 shows the time for creating new VMs on demand from
the VM substrate pool. The time is broken down into four parts:
preparing the disk, multicasting substrate over local network, de-
compressing VM substrate, and activating VM. From this figure,
we can see that the total time of creating a single VM from sub-
strate is as small as 2.5 seconds. This time does not contain the time
to generate VM substrates. It assumes that the substrate is always
available in the pool. This figure shows VM substrate pool is capa-
ble of providing prompt response to laterncy sensitive VM creation
requests. When the number of VMs to be created increases, the to-
tal latency of the VM creation does not increases significantly. This
is due to the use of multicast, which does not incur proportional
overhead when the scale increases. Similarly, the cost of transfer-
ring substrates to more than one physical host is almost the same
as transferring to a single host. However, the cost of disk creation
increases with the number of VMs. Note that the absolute creation
time for a single disk is less than a second, given enough storage
bandwidth, the disk creation part is not the limiting factor of the
scalability of our VM substrate approach.

5.2 Case Study: Mobile Application Offloading

In this experiment, we analyze the effectiveness of VM substrate
from the standpoint of cloud users. We implemented a usage case
to create new VM on demand to offload the computation from
mobile devices. We selected a mobile version of the chess game
as the source of computation to be offloaded. It is representative
because the user interface is simple and lightweight but the backend
computation of the piece movement is computation intensive for
mobile devices like smart phones. The chess game allows human
players to play with a computer. We implemented an Al component
on the server side to calculate each move for the computer side.
This Al component is not only CPU intensive, but also consumes
considerable amount of memory to record the game status of both
players. For the computer side, It can make decisions for current
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move based on different number of steps looking into the future.
More computation and resources are required if the computer side
looks into the future with a large number of steps. Mobile devices
are limited in terms of memory, computation power and energy
reserves. If the mobile device is running an Al opponent which is
configured with large resource requirement, the user would have to
wait noticeable amounts of time for the opponent to make its move.
The battery of the mobile device can also burn out quickly. In fact,
if the computer side is configured to be intelligent enough, some
early mobile phones may not even be able to run the chess game
successfully. One solution is to offload the computation to a VM
in cloud. Although offloading itself has some limitations because it
requires computation of an application can be separated from the
ches game itself and be executed on a remote VM server, it is still
a viable workaround for many applications with simple frontend
graphics interface and relatively loosely coupled backend. All the
local mobile device needs to do is to collect and display the results.
In our experiment, the chess game is one of the applications that
can take advantage of on-demand prompt VM creation. Because the
human player may have non-deterministic think time between two
moves, we choose to dock the offloading VM after it finishes the
computation for one move. When the human player initiate another
move, the docked VM is restarted upon the human’s move. In this
setting, the latency incurred by VM startup from substrate directly
affect human players’ experience.

We compare the performance speedup of the chess game when
the computation is offloaded to a VM with full capacity (i.e. “ready
to use”) with the performance when the computation is offloaded
to a newly created VM from substrates (i.e. “using VM substrate”).
The baseline performance was obtained from a cell phone running
the android OS which has a 1Ghz CPU and 512MB memory. The
speedup was calculated as the ratio of the processing time on the
VM server over the time on the phone. Figure 10 shows very similar
speedup between offloading to on-demand VMs from substrates
and offloading to static VMs. It suggests that on-demand creation
of VMs from substrate incurs mininal latency and thus can provide
instant responses to users’ request.

5.3 Performance Comparison

In practice, there are a few different options to start a new VM.
These options includes suspend and resume [24], migrating VM
from other hosts [4], creating VM from scratch and our VM cre-
ation from VM substrate Among these options, creating VM from
scratch involves the whole OS installation process and takes a sig-
nificant amount of time, which is not considered for comparison.
In this experiment, we created three new VMs containing a web
server, a database server and a VM with development environment
respectively in the above three different ways. Figure 11 draws the
the startup time of these methods. The startup time is the time be-
tween the creation , migration or resume request is received and
the time the VM is ready. A VM is considered ready when it is
responsive to user’s other request like launching a program. Tech-
nically, it is when all the virtual CPUs are back online, memory

Figure 10. Delay time of offloading checker.

Figure 11. Startup time comparison.

is ballooned back and network interfaces are attached. As shown
in Figure 11, VM creation from substrate is almost as fast as VM
migration. Note that VM migration need to maintain the VM run-
ning in its full capacity, which consumes a significant amount of re-
sources limiting the scalability. In contrast, VM substrate maintains
a large pool of substrates with mininal footprints. In our testbed
with 8GB memory, we were able to host as many as 230 substrates.
As expected, the suspend and resume approach incurred consider-
able startup time because the resume process needs to load a large
state file from hard disk.

6. Related work

VM templates are widely used to create new VMs in the majority of
system virtualization platforms. Through preparing reusable tem-
plates, which are usually configured to include a standardized set
of hardware and software configuration settings, the efficiency of
deploying VM infrastructure could be significantly increased due
to the fact that many repetitive installation and configuration tasks
are avoided. A base VM template contains the essentials of server
image so called Just-Enough-OS(JeOS) and the base template can
be extended by installing software application(s) in order to gen-
erate new template. VM templates[20] can be either converted to
virtual machines and powered on without deploying them. The
conversion will either turn the original template into VMs which
means the template doesn’t exist anymore or clone the templates
to VMs through replication which involves time consuming disk
copy. Moreover, starting a new VM created from a VM template
needs error prone booting process.

The Amazon Elastic Compute Cloud (EC2) [6] is a widely used
cloud computing platform. EC2 allows users to create an Ama-
zon Machine Image (AMI) containing their applications, libraries,
data and associated configuration settings or use pre-configured,
template images to get up and running immediately. Amazon’s
EC2 claims to instantiate multiple VMs in “minutes” is still not
enough to meet requirement of some real time VM creation re-
quests. RightScale [22] also provides scripts to create and configure
a basic VM from scratch. Although the installation and configura-
tion are done automatically, it is often not applicable to on-demand
VM creation due to the time consuming installation.

Some recent research work explores the idea of process fork to
VM level where a running VM spawns child VMs that are clones
of itself. The Potemkin project [27] realized a VM fork scheme
that creates lightweight VMs from a static template locally within
a single machine. Through aggressive memory sharing and COW
techniques, Potemkin allows quick VM forking by deferring the
duplication of memory pages until the contents of pages actually
differ between VMs. It can support potentially hundreds of short-
lived VMs on physical honeyfarm servers. However, Potemkin does
not have the flexibility to create multiple VMs onto different hosts
and does not offer runtime statefull cloning. Snowflock [11] ex-
tends the concept of VM fork in a distributed manner, enabling
cloning a VM into multiple statefull replicas running in a cluster of



machines. Snowflock leverages the same COW technique used by
Potemkin and takes advantage of the high correlation of the chil-
dren VM, providing a immutable image of the parent VM and a
demand-paging mechanism to let children retrieve missing pages.
Similar to process fork, VM fork is able to efficiently share parent’s
resources and swiftly create interim VM clones that run simultane-
ously in a real time manner. However, current VM fork implemen-
tations do not aim to deploy longstanding independent VMs. VM
substrate is different from Potemkin or Snowflock in their purposes.
Potemkin and Snowflock aim to provide on-demand virtual clusters
with “identical” and “temporary” VM children forked from a sin-
gle parent. VM substrate’s objective is to preserve and restore cus-
tomized user working space (VM’s with different running states)
with minimal cost. The VMs in question are heterogeneous and not
necessarily belong to the same user.

The idea of a pool structure is widely used in the design of com-
puter systems. Most of early works focused on thread and process
level pools [1, 13, 18, 21], or processor level pool [30]. The popular
Apache web server [1] uses a thread pool to handle incoming re-
quest, but there is no resource reconfiguration for each thread. Iran
Pyarali et al. [21] proposed an optimization to improve the quality
of thread pools in real-time systems. They described the key pat-
terns underlying common strategies for implementing RT-CORBA
thread pools and evaluated each thread pool strategy from various
aspects. In [13], Ling et al. characterized several system resource
costs associated with thread pool size and analytically determined
the optimal thread pool size to maximize the expected gain of using
a thread and minimize the overhead of run-time memory allocation
and deallocation while creating and destroying a thread. In [30],
the authors proposed a class of scheduling algorithms based on a
processor level pool which is used to organize and manage a large
number of processors to improve performance.

7. Future Work and Conclusions

In this section, we briefly discuss a number of directions that
we intend to explore in the future to improve and extend our
VM substrate framework. As we have discussed in the previous
sections, VM substrate based VM deployment is able to deploy
diverse VM within seconds. The idea is preliminary and we plan
to further investigate the following areas.

VM streaming. Our current implementation decompress the
VM substrate to get the raw substrate and then start new VMs
from the raw substrate. Although from Figure 7, we can see that
decompression takes less time than compression, it is still costly to
decompress the substrate when the memory footprint is large. Thus,
a mechanism that allows a VM to boot while the decompression is
in process will further reduce the startup latency.

Dynamically linked storage. Because VMs’ resources such as
vCPU number, memory size and network bandwidth are config-
urable, it makes the charge of VM resources in pay-as-you-go man-
ner possible. However, storage is not so easily reconfigured as other
resources. First, the change of disk size can not take effect without
reboot even when LVM is used. Second, running VM’s root disk
is unable to be altered. Both of these two factors affect the agility
of deploying VMs. On the other hand, if each VM can use dy-
namically linked storage, the actual physical disk partition can be
dynamically changed.

Improved memory metering. As discussed in the previous
sections, memory footprint is closely related to the final size of
VM substrate. The smaller the memory footprint, the smaller the
substrate. Our current implementation leverages the proc interface
under Linux to get the memory utilization. Only the used memory
pages need to be dumped in the VM substrate. Identification of
unused memory pages or calculation of the memory utilization of a
running VM is not trivial. Different from free pages, unused pages

refer to those that once touched but not actively being accessed
by the system. It can be calculated as the total memory minus the
system working set. One possible direction is to integrate more
accurate memory metering in VMM level.

In closing, we introduce the primitive of retrofitting VM deploy-
ment by using VM substrate and present the design, implementa-
tion, and evaluation of a novel approach to manage VMs in agile
virtualized environment. Our VM substrate-based VM shrinking
and expansion management allows VM creating, reconfiguration
in a way that is transparent to users and enables the instantiation of
statefull VMs or VM clusters with sub-seconds latency. Our VM
pool architecture is effective in reducing the latency of preparing
new VMs and increasing the reusability of VM substrates. It in-
curs small overhead on the creation of a single or a cluster of VMs.
Experiment results on the computation offloading from mobile de-
vices show that the pool of VM substrates is able to provide instan-
taneous response to user request in an interactive job.
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