
eQoS: Provisioning of Client-Perceived End-to-End
QoS Guarantees in Web Servers

Jianbin Wei and Cheng-Zhong Xu
Department of Electrical and Computer Engineering

Wayne State University, Detroit, Michigan 48202
Email: {jbwei, czxu}@wayne.edu

Abstract— It is important to guarantee client-perceivedend-to-
end quality of service (QoS). Existing work, however, are limited
to either server-side or network-side delays only. As a remedy, in
this paper we propose a scalable and flexible framework, eQoS, to
monitoring and controlling client-perceived QoS in web servers
based on recently proposed approaches for real-time online QoS
measurement. Within theeQoS, to deal with the inherent process
delay in resource allocation and lack of accurate server model,
we propose a model-independent two-level self-tuning fuzzy
controller (STFC) to allocating server resources. To evaluate the
performance of the eQoS framework, we have implemented a
prototype in Linux. Through comprehensive experiments across
wide-range server workload conditions using real-world and
simulated networks, we demonstrate that provisioning of client-
perceived QoS guarantees in heavy-loaded web servers is feasible
and the eQoS is effective in such provisioning: The average
deviation from a target response time 5 seconds with respect
to whole web pages is only 1 second. We compare the STFC
with non-adaptive fuzzy, linear proportional integral, and adap-
tive proportional integral controllers. The experimental results
demonstrate that their deviations are around 125%, 175%, and
150% of that of the STFC, respectively.

I. I NTRODUCTION

The past decade has seen an increasing demand for pro-
visioning of quality of service (QoS) guarantees to various
network applications and clients. There exist many work on
provisioning of QoS guarantees. Most of them, however, focus
on web servers without considering network delays [1], [6],
[7], [9], [41], [44], on individual network router [8], [15],
[12], or on clients with assumptions of QoS supports in
networks [14]. The focus of recent work is on end-to-end
QoS guarantees in network cores [19], [39]. For example,
in [19], the authors aimed to guarantee QoS measured from
server-side network edges to client-side network edges without
considering delays incurred in servers.

In practice, client-perceived QoS is not only affected by
network delays but also by server delays. The objective of this
paper is to guaranteeclient-perceivedend-to-end QoS in web
servers. To provide such QoS guarantees, service quality must
accurately measured in real time so that server resources can
be allocated promptly. The recent approach presented in [27]
realizes such real-time measurement. It makes provisioning of
client-perceived end-to-end QoS guarantees possible.

Our first contribution in this paper is that we proposeeQoS,
a framework to monitoring and controlling client-perceived
QoS in web servers. To the best of our knowledge, the

eQoS is the first one to guarantee client-perceived end-to-end
QoS by taking advantage of the real-time QoS measurement.
Moreover, in the framework, the guaranteed QoS is measured
with respect towholeweb pages instead of a single packet in
networks or a single request [1], [2] or connection [23], [35] in
web servers. It is because more than 50% of web pages have
one or more embedded objects [16]. Our second contribution
in the paper is that, within theeQoS, we propose a model-
independent two-level self-tuning fuzzy controller (STFC) to
allocate server resources.

Traditional linear feedback control has been applied as an
analytic method for QoS guarantees in web servers because of
its self-correcting and self-stabilizing behavior. It adjusts the
allocated resource of a client class according to the difference
between the target QoS and the achieved one in previous
scheduling epochs [1], [22], [33]. In these approaches, the
nonlinear relationship between the allocated resource of a
class and its received service quality is linearized at a fixed
operating point. It is well known that linear approximation of
a nonlinear system is accurate only within the neighborhood
of the point where it is linearized. In fast changing web
servers, the operating point changes dynamically and their
simple linearization thus is inappropriate.

The process delayis the latency between allocating server
resources and accurately measured effect of the resource
allocation on provided service quality. In web servers, resource
allocation must be based on an accurately measured effect of
previous resource allocation on the client-perceived response
time of web pages. According to HTTP, to retrieve a web
page, a client fist sends a request for the base page. The server
then needs to schedule the request according to its resource
allocation. At this point, it is impossible to measure the client-
perceived response time of the web page because the server
needs to handle the request and the response needs to be
transmitted over the networks. An accurate measurement of
resource-allocation effect on response time thus is delayed.
Consequently, the resource allocation is significantly compli-
cated because it has to be based on an inaccurate measurement.

The process delay has also been addressed using queueing-
model based predictor in [23], [35]. They integrated the pre-
dictor into a linear feedback controller to react to an incoming
performance degradation according to predicted server work-
loads. Without an appropriate model to describe the server
behaviors with respect to web pages, the performance of their

approach is limited.
The STFC is proposed to overcome the existing approaches’

limitations. On its first level is a resource controller that
takes advantage of fuzzy control theory to address the issue
of lacking accurate server model due to server dynamics
and unpredictability. On the second level is a scaling-factor
controller. It aims to compensate the effect of process delay
by adjusting the resource controller’s output scaling factor
according to transient server behaviors.

To evaluate the performance of theeQoS framework, we
implement a prototype in Linux. We conduct experiments
across wide-range server workload conditions on PlanetLab
test bed [32]. We also evaluate the effect of network delays on
its performance using simulated networks. The experimental
results demonstrate that provisioning of client-perceived QoS
guarantees is feasible and theeQoS is effective in such
provisioning: The average deviation from a target response
time 5 seconds with respect to whole web pages is only 1
second.

Within the eQoS framework, we also implement non-
adaptive fuzzy, linear proportional integral (PI), and adap-
tive PI controllers and compare their performance with the
STFC. The experimental results demonstrate that the STFC
outperforms other controllers with much smaller deviations:
the deviations of the non-adaptive fuzzy controller, the PI
controller, and the adaptive PI controller are around 125%,
175%, and 150% of that of the STFC, respectively.

Our contributions in the paper can be summarized as
follows.

1) Proposing a framework,eQoS, to guarantee client-
perceived end-to-end QoS.

2) Proposing a model-independent two-level self-tuning
fuzzy controller (STFC) for resource allocation in web
servers.

3) Implementing and evaluating the performance of the
eQoS on read-world and simulated networks and com-
paring the STFC with non-adaptive fuzzy, PI, and adap-
tive PI controllers.

The structure of the paper is as follows. Section II presents
the structure of theeQoS framework and discusses the design
and implementation issues. Section III presents the model-
independent two-level STFC. Section IV evaluates the perfor-
mance of theeQoS in real-world and simulated networks and
compares the performance of different controllers. Section V
reviews related work in provisioning of QoS guarantees in web
servers and Section VI concludes the paper.

II. T HE eQOS FRAMEWORK

The eQoS is designed to provide client-perceived end-
to-end QoS guarantees in web servers. It monitors client-
perceived QoS in real-time with respect to whole web pages
with considerations of both network and server delays. To
control client-perceived QoS, it dynamically allocates server
resources between client classes by addressing the issues
of lacking accurate server model and the process delay in
resource allocation. We discuss the design and implementation

issues in this section. Section III presents the design of the
STFC.

A. The Design of theeQoS

The eQoS framework consists of four components: a web
server, a QoS controller, a resource manager, and a QoS
monitor, Figure 1 illustrates the components and their inter-
actions. The Apache web server can be used to provide web
services. The QoS controller aims to allocate resource allo-
cation between client classes based on defined control rules.
It can be any controller designed for the provisioning of QoS
guarantees. For example, in our implementation, we realize the
STFC, a non-adaptive fuzzy controller, a PI controller, and an
adaptive PI controller.

The resource manager is to classify and manage client
requests and to realize resource allocation between classes. In
our design, it comprises of a classifier, several waiting queues,
and a processing-rate allocator. The classifier determines a
request’s class according to rules defined by service providers.
The rules can be based on the request’s header information
(e.g., IP address and port number) or be extended to use
application-level information [42]. In an unmodified web
server, a single waiting queue is created for a socket to store
all established connections. In theeQoS, a request is stored in
the accept queue corresponding to its client class within the
resource manager. The requests from the same class are served
in first-come-first-served manner. The process-rate allocator is
to realize resource allocation between different classes. Since
every child process in the Apache web server is identical,
we realize the processing-rate allocation by controlling the
number of child processes that a class is allocated. In addition,
when a web server becomes overloaded, admission control
mechanisms [10], [44] can be easily integrated into the re-
source manager to ensure the server’s aggregate performance.

The QoS monitor is to measure the response time in real-
time with respect to whole web pages using similar ideas
as presented in [27]. One challenge in measuring client-
perceived response time with respect to web pages is how
to dynamically determine the beginning and the ending of
the web page during the transmission of client requests and
server response. In theeQoS, the QoS monitor consists of a
request-response collection component, a web reconstruction
component, and a response-time measurement component. The
request-response collection can capture live network packets
or use information from instrumented web servers. Based on
the collected information, the web pages are reconstructed in
real time based on the HTTPreferer field that specifies the
web page from which the requested web object is obtained.
The response time then is measured with considerations of
network propagation delays and the effect of packet loss during
the connection establishment [27].

TheeQoS framework is scalable and flexible. Its scalability
is achieved by employing a non-hierarchical or functionally
symmetric architecture, which is inherently free of scaling
bottlenecks. Therefore, theeQoS can be deployed in multiple
servers independently. The flexibility comes from the inde-

2

waiting queue

responses

requests

requests

processing rate

error

processing
rate

allocator

change
of error

Apache
web server

Resource Manager

average
response

time

classifier

Self-tuning
fuzzy controller

QoS Monitor

request-response
collection

w
eb

page
reconstruction

response
tim

e
m

easuring

QoS Controller

Fig. 1. The structure of theeQoS framework.

pendence between different components. For example, in the
case of a web-server cluster, the resource manager can reside
in every web servers while the QoS monitor and the QoS
controller are deployed in a front-end proxy of the cluster to
monitor and manage the resource of the whole cluster.

B. The Implementation of theeQoS

To evaluate the performance of theeQoS, we have imple-
mented a prototype in Linux. In our implementation, we take
into account following four issues. First, in a heavily loaded
web server, a new connection request may be dropped by the
operating system due to overflowed accept queue in the kernel
and the exponential back-off mechanism of client-side TCP
will be triggered. To minimize such possibility so as to reduce
the retransmission delays, our implementation of the resource
manager drains the kernel’s accept queue in a tight loop. The
accepted connections are stored in their corresponding accept
queues that have unlimited size within the resource manager.

Second, to ensure that the aggregate performance of a web
server to be unaffected by supporting QoS guarantees, the
processing-rate allocator realizes the resource allocation using
work-conserving weighted fair queueing algorithms [28]. In
the implementation, the Apache web server is modified to
accept requests from the resource manager through a unix
domain socket. When a child process in the Apache web
server callsaccept()on the unix domain socket, a signal is
sent to the processing-rate allocator. Upon receiving the signal,
the allocator determines which class should be served and
dispatches a request from the class through the unix domain
socket to the child process. In the case that all accept queues
are empty, a flag is set to indicate that there exists an idle
child process. A newly arrived request will be passed to the
child process immediately if the flag is set.

In addition, similar as the approaches in [44], in order
to prevent sudden spikes in the response time sample from
causing oscillations in the resource allocation, the average
response time is smoothed using an exponential weighted
moving average with parameterβ:

W (k) = β · W (k) + (1 − β) · W (k − 1),

whereW (k) is the average response time computed in sam-
pling period k. We have carried experiments with different

β and found no qualitative differences. To balance weights
between current served requests and those processed in the
past, in the implementation we setβ to 0.5.

Finally, in the eQoS, we assume that the capacity of a
web server is limited by its CPU (processing rate). With
the popularity of dynamic web content, such as those in e-
Commerce web servers, processing rate becomes easier to be
bottleneck resource than others. Similar assumptions have also
been adopted in previous work [2], [22]. Note that although
we assume that processing rate is the bottleneck of a web
server, the main ideas can be applied for alternative bottleneck
resources as well.

III. T HE SELF-TUNING FUZZY CONTROLLER

To guarantee client-perceived QoS effectively, the QoS
controller must address issues of the process delay in resource
allocation and lack of accurate server model. In the section,
we first briefly review the interactions between clients and
web servers during the retrieval of web pages, followed by
the process delay and its effect on resource allocation. After
that, we present our design of the STFC in details.

A. The Interactions between Clients and Web Servers

Client-perceived response time of a web page is the time
interval that starts when a client sends the first request for
the web page to the server and ends when the client receives
the last object of the web page. In this work we use the
Apache web server with support of HTTP/1.1. We assume
that all objects reside in the same server so that we can
control the processing of the whole web page. Figure 2 shows
the interactions between clients and web servers during the
retrieval of http://www.foo.com/index.html.

1) The client first obtains the IP address ofwww.foo.com
by inquiring domain name servers or from its own cache
if the web site has been accessed in the past and the
address is cached.

2) The client sends a connection request to the web server
corresponding to the IP address and establishes a TCP
connection via three-way handshake.

3) After establishing the TCP connection, the client sends
an HTTP request forindex.html. Note that in practice,
the client normally sends the first HTTP request imme-
diately (within 0.5ms in our experiments) after the last
step of the three-way handshake.

4) The server determines when the established TCP con-
nection should be passed to the Apache web server based
on its resource allocation.

5) A child process of the Apache web server processes the
request and sendsindex.html back to the client.

6) The client sends individual request for each embedded
object to the server.

7) The server sends all embedded objects back to the client.
8) The server waits for possible requests from the same

connection for certain period (the default is 15 seconds
in the Apache web server) and then terminates the
connection.

3

Client

Server
S
Y

N
J

S
Y

N
K

,
a
ck

J
+

1

a
ck

k
+

1

(3
)

G
E

T

(5
)

in
d
ex

.h
tm

l

(6
)

em
b
ed

d
ed

o
b
je

ct
s

(8) TCP
termination

waiting for
scheduing

(7
)

la
st

em
b
ed

d
ed

o
b
ject

(2) TCP connection

client-perceived reponse time of a web page

(4) request
schedued

and processed

Fig. 2. The interactions between the client and the web server during the
retrieval ofhttp://www.foo.com/index.html.

In this work we only consider the latency incurred in step
(2) through step (7). The latency incurred in step (1) is only
measurable from client side and is difficult to be obtained
from web servers. More importantly, if the server address
is available in the client side (the client’s cache or client-
side domain name servers), the latency is normally negligible
in comparison with response time of web pages, which is
normally in the order of seconds. For example, as shown
in [29], 70% of the name-lookup requests have response time
less than 10msand 90% of them are less than 100ms for all
of their examined domain name servers except one.

In theeQoS, we aim to guarantee the average response time
of web pages perceived by premium clients to be close to a
pre-defined reference valueD(k). We have

W (k) = D(k). (1)

By achieving this, theeQoS guarantees QoS of premium
clients and provides as good as possible services to other
clients simultaneously. Because the server load can grow
arbitrary high, it is impossible to guarantee QoS of all clients
under heavy-load conditions.

B. The Process Delay in Resource Allocation

To provide QoS guarantees, the resource allocation in web
servers must be based on an accurately measured effect of
previous resource allocation on client-perceived QoS. It in turn
controls the order in which client requests are scheduled in
step (4). Aforementioned, there exists process delay between
the resource allocation and the effect measurement. It has
been recognized as one of the most difficult dynamic element
naturally occurring in physical systems to deal with [37]. It
sets a fundamental limit on how well a controller can fulfill
design specifications because it limits how fast a controller can
react to disturbances. Consequently, the resource allocation
must be designed to compensate the process-delay effect.

We have conducted experiments to quantify the process
delay in resource allocation. The experimental environments
are described in Section IV-A. In the experiments, the number
of concurrent users and the RTT are set to 700 and 180ms,
respectively. Figure 3(a) shows the percentage of requests
finished within different numbers of sampling period after

Fu
zz

ifi
ca

ti
on

D
ef

uz
zi

fic
at

io
n

fuzzified inputs fuzzy conclusions

d
dt

r(k) e(k) ∆u(k)
+

−

∑ ∫ u(k)
∆e(k)

Ke

K∆e

αK∆u

Inference
mechanism

Rule-base

α

y(k)

Scaling-factor controller

from
QoS

monitor

to
resource
managerResource controller

Fig. 4. The structure of the STFC.

being admitted. Figure 3(b) depicts corresponding cumulative
distribution function of the service time, which is the latency
incurred in step (5) through (7). Because the latency incurred
in step (2) through (4) can be measured at the end of step (4),
it does not affect the accuracy of measured resource-allocation
effect. Comparing Figure 3(a) and Figure 3(b) we observe that,
although over 95% of the requests are finished in 8 seconds
after being admitted, only 77.8% of them are processed within
the same sampling period when it is set to 8 seconds. More-
over, it also indicates that 22.2% of the measured response
time are affected by the resource allocation performed several
sampling periods ago. It further complicates the accuracy
of effect measurement. Consequently, the resource-allocation
effect cannot be accurately measured promptly.

C. The Structure of the Resource Controller

Within the eQoS framework, we propose a model-
independent two-level STFC to controlling the resource al-
location in web servers. Figure 4 presents the structure of
the STFC. The resource controller on the first level takes
advantage of fuzzy control theory to address the issue of
lacking accurate server models. The scaling-factor controller
is to compensate the effect of process delay by adjusting
the resource controller’s output scaling factor according to
transient server behaviors.

In the resource controller, the resource allocated to premium
class in sampling periodk+1, denoted byu(k+1), is adjusted
according to its errore(k) (i.e., the difference between the ref-
erence value and the achieved one) and change of error∆e(k)
in previous sampling periodk using a set of control rules about
heuristic control knowledge. In the controller,e(k) and∆e(k)
are calculated using the reference valuer(k) and the achieved
valuey(k). Based on these, the controller calculates resource
adjustment∆u(k) for next sampling period, which is then fed
into the resource manager component.

As shown in Figure 4, the resource controller consists of
four components. The rule-base contains a set ofIf-Thenrules
about quantified control knowledge about how to adjust the
resource allocated to premium class according toe(k) and
∆e(k) in order to provide QoS guarantees. The fuzzification
interface converts controller inputs into certainties in numeric
values of the input membership functions. The inference mech-
anism activates and applies rules according to fuzzified inputs,
and generates fuzzy conclusions for defuzzification interface.
The defuzzification interface converts fuzzy conclusions into

4

0 1 2 4 8 16
Size of sampling period (second)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) sampling period = 1
sampling period = 2
sampling period = 3
sampling period > 3

(a) The percentage of processed requests as a function of the size
of sampling period.

0 1 2 4 8 16
Time (second)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Service time

(b) The cumulative distribution function of service time with respect
to web pages.

Fig. 3. The process delay in resource allocation.

the change of resource of premium class in numeric value.
The resource controller presented in Figure 4 also contains

three scaling factors: input factorsKe and K∆e and output
factor αK∆u. They are used to tune the controller’s perfor-
mance. The actual inputs of the controller areKee(k) and
K∆e∆e(k). In the output factor,α is adjusted by the scaling-
factor controller. Thus, the resource allocated to premium class
during the(k + 1)th sampling period is

u(k + 1) = u(k) + αK∆u∆u(k) =
∫

αK∆u∆u(k)dk. (2)

Note that these scaling factors are positive in order to ensure
the stability of the control system, which is proved in [43].

The parameters of the control loop as shown in Figure 4
are defined as follows.

r(k) = D(k), (3)

y(k) = W (k), (4)

e(k) = D(k) − W (k), (5)

∆e(k) = e(k) − e(k − 1). (6)

1) Design of the Rule-base:It is well known that the
bottleneck resource plays an important role in determining
the service quality a class receives. Thus, by adjusting the
bottleneck resource a class is allocated, we are able to control
its QoS: The more resource it receives, the smaller response
time it experiences. The key challenge in designing the re-
source controller is how to translate such heuristic control
knowledge into a set of control rules so that it is able to provide
QoS guarantees without an accurate model of continuously
changing web servers.

In the resource controller, we define the control rules using
linguistic variables. For brevity, linguistic variables “e(k)”,
“∆e(k)”, and “∆u(k)” are used to describee(k), ∆e(k), and
∆u(k), respectively. The linguistic variables assume linguistic
valuesNL,NM, NS,ZE,PS, PM, PL. Their meanings are
shown in Figure 5(a). Note that they indicate the sign and the
size in relation to the other linguistic values. This gives more
flexibility to the STFC than other control-theoretic approaches.

We next analyze the effect of the controller on the provided
services as shown in Figure 6(a). In this figure, five zones
with different characteristics can be identified. Zone 1 and 3
are characterized with opposite signs ofe(k) and∆e(k). That
is,

Zone 1: e(k) is positive and∆e(k is negative;
Zone 3: e(k) is negative and∆e(k) is positive.

In these two zones, it can be observed that the error is self-
correcting and the achieved value is moving towards to the
reference value. Thus,∆u(k) needs to set either to speed up
or to slow down current trend.

Zone 2 and 4 are characterized with the same signs ofe(k)
and∆e(k). That is,

Zone 2: e(k) is negative and∆e(k) is negative;
Zone 4: e(k) is positive and∆e(k) is positive.

Different from zone 1 and zone 3, in these two zones, the error
is not self-correcting and the achieved value is moving away
from the reference value. Therefore,∆u(k) should be set to
reverse current trend.

Zone 5 is characterized with rather small magnitudes of
e(k) and ∆e(k). Therefore, the system is at a steady state
and∆u(k) should be set to maintain current state and correct
small deviations from the reference value.

By identifying these five zones, we are able to design
the fuzzy control rules. LetU(k) denote the equilibrium
resource value of premium class at which the reference value
can be achieved. Let̃u(k) denote the difference between the
equilibrium resource value and current one. It follows that

ũ(k) = U(k) − u(k). (7)

In order to provide QoS guarantees, the resource allocation
should converge to its equilibrium value. Based on the char-
acteristics of the five zones shown in Figure 6(a), in linguistics,
we have

“ ũ(k)” = −[“e(k)” + “∆e(k)”], (8)

and “∆u(k)” is set as

“∆u(k)” = “ ũ(k)” . (9)

Notice that we are using linguistic values of the controller’s
inputs and output, andNL and PL are their lower bound
and upper bound, respectively. Therefore, when “e(k)” and
“∆e(k)” are NL, “∆u(k)” is set toPL.

The resulted control rules are summarized in Figure 6(b).
A general linguistic form of these rules is read as:If premise
Then consequent. Letrule(m,n), where m and n assume
linguistic values, denote the rule of the(m,n) position in

5

∆e(k)

µ

1/3 2/3 1−1/3−2/3−1

1
ZE PS PM PLNSNMNL

0 e(k)

∆u(k)

NL: negative large
NM: negative medium
NS: negative small
ZE: zero
PS: positive small
PM: positive medium
PL: positive large

(a) The membership functions ofe, ∆e, and∆u.

µ

1/3 2/3 1

1
ZE ML LG VLSMVS SL

0 α

ZE: zero
VS: very small
SM: small
SL: small large
ML: medium large
LG: large
VL: very large

(b) The membership functions ofα.

Fig. 5. The membership functions of the STFC.

R
es

po
ns

e
ti

m
e

Sampling period

reference response time

5
2 3

41

(a) Illustration of control effect.

PS

PMPL

ZE

NS

NM

NL

“∆e(k)”“∆u(k)”

“e(k)”
PL

PL

PL

PL

PL

PL

PL

PL
PL

PL

PM

PM

PM

PM

PM
PM

PL

NL

NM

NS

ZEPS

PS

PS

PS

PS

PS
PS

ZE

ZE

ZE

ZE

ZE

ZE
ZE

NS

NS

NS

NS

NS

NS

NM

NM

NM

NM

NM

NL

NL

NL NL

NL

NL

NL

NL

NL

NL
1

3

4

2

5

(b) The rule-base of the resource controller.

Fig. 6. Fuzzy control rules in the resource controller.

Figure 6(b). As an example,rule(PS, PS) = NM reads that:
If the error is positive smalland the change of error is positive
small Thenthe change of resource is negative medium.

Remark:Note that the control rules are designed based on
the analysis of resource-allocation on achieved response time.
It avoids the needs of an accurate model for web servers.
Therefore, the STFC ismodel independent.

2) Fuzzy Quantification of the Rule-base:In the resource
controller, the meaning of the linguistic values is quantified
using “triangle” membership functions, which are most widely
used in practice, as shown in Figure 5(a). We have also
examined membership functions with different shapes, such
as “Gaussian” and “trapezoid”, and found no significant per-
formance differences between them. For brevity, in the paper
we only present the results due to the “triangle” membership
functions. In Figure 5(a), thex-axis can bee(k), ∆e(k), or
∆u(k). Themth membership function quantifies thecertainty
(between 0 and 1) that an input can be classified as linguistic
valuem.

The fuzzification component translates the inputs into cor-
responding certainty in numeric values of the membership
functions. Letµm(e(k)) denote the certainty ofe(k) of the
mth membership function, andµn(∆e(k)) the certainty of
∆e(k) of the nth membership function. Whene(k) = 1/12
and∆e(k) = 1/3, according to the membership functions of
e(k) and∆e(k), all membership functions yield0 except that

µZE(e(k)) = 0.75, µPS(e(k)) = 0.25, and
µPS(∆e(k)) = 1.

3) Inference Mechanism and Defuzzification:The inference
mechanism is to determine which rules should be activated
and what conclusions can be reached. Letµ(m,n) denote the
premise certainty ofrule(m,n). The and operation in the
premise is calculated viaminimum. Supposee(k) = 1/12
and ∆e(k) = 1/3, then only two rules,rule(ZE,PS)
and rule(PS, PS), should be activated because the premise

certainties of all other rules are 0 according to the example
presented in Section III-C.2. Consequently,

µ(ZE,PS) = min{0.75, 1} = 0.75, andµ(PS, PS) =
min{0.25, 1} = 0.25.

Based on the outputs of the inference mechanism, the de-
fuzzification component calculates the fuzzy controller output,
which is a combination of multiple control rules, using “center
average” method. Letb(m,n) denote the center of membership
function of the consequent ofrule(m,n). In this case, it is
where the membership function reaches its peak. The fuzzy
control output is

∆u(k) =

∑
m,n b(m,n) · µ(m,n)∑

m,n µ(m,n)
. (10)

D. The Scaling-factor Controller

To successfully design the resource controller discussed
in Section III-C, a proper output scaling factorαK∆u is
important because of its global effect on the control perfor-
mance. Furthermore, the design of the STFC needs to take into
account the process delay as discussed in Section III-B. To the
end, we design a scaling-factor controller to adaptively adjust
αK∆u according to the transient behaviors of a web server
in a way similar to [25] so as to compensate the effect of
the process delay. Notice that it is difficult to apply traditional
methods, such as gradient descent method, to adjustαK∆u

without an accurate server model.
The scaling-factor controller consists of the same compo-

nents as the resource controller. The membership functions
of “α” (the corresponding linguistic variable ofα) also have
“triangle” shape as shown in Figure 5(b). Becauseα needs to
be positive to ensure the stability of the control system, “α”
assumes different linguistic values from “e(k)” and “∆e(k)”.
Figure 5(b) also shows the linguistic values and their mean-
ings.

6

PS

SL VL

ZE

NS

NM

“∆e(k)”“∆u(k)”

“e(k)”
VL

LG

VL

VL

LG

VL

LG

SM
PL

VL

LG

ML

PM

PM

VSPL

NL

ML

SM

SM SM

ML

SL

PS

VS

VS

ZE

ZE
ZE

SL

NS

SM

NM

SL

NL

LG
3

2

SLVL

VL

VL

VL

VL

LG

SM

VL

LG

VS

SM

SMSM

ML

VS

VS

ZE

SM

SLVL

1

4
1 2

3

4
5

Fig. 7. The rule-base of the scaling-factor controller.

The control rules of the scaling-factor controller are de-
signed in order to compensate the effect of the process delay
on the performance of the STFC. They are shown in Figure 7
with following five zones.

1) Whene(k) is large but∆e(k) and e(k) have the same
signs, the client-perceived response time is not only far
away from the reference value but also it is moving
farther away. Thus,α should be set large to prevent the
situation from further worsening.

2) When e(k) is large and∆e(k) and e(k) have the
opposite signs,α should be set at a small value to ensure
a small overshoot and to reduce the settling time without
at the cost of responsiveness.

3) Whene(k) is small,α should be set according to current
server states to avoid large overshoot or undershoot. For
example, when∆e(k) is negative large, it means the
average response time of premium class just reaches the
reference value and is moving away upward. A largeα
is needed to prevent the upward motion more severely
and can result in a small overshoot. Similarly, when
e(k) is positive small and∆e(k) is negative small, then
α should be very small. The large variation ofα is
important to prevent excessive oscillation and to increase
the convergence rate of achieved service quality. Such
large variation also justifies the need for dynamic output
scaling factor.

4) Note that the workload of a web server is highly
dynamic and has disturbances. The scaling-factor con-
troller also provides regulation against the disturbances.
For example, when a workload disturbance happens,
e(k) is small and∆e(k) is normally large with the same
sign ase(k). To compensate such workload disturbance,
α is set large.

5) When bothe(k) and ∆e(k) are very small,α should
be around zero to avoid chattering problem around the
reference value.

The operation of the STFC has two steps. First, we need
to tune theKe, K∆e, and K∆u through trials and errors.
In the step, the scaling-factor controller is turned off and
α is set to 1. Notice that the tuning of control factors is
required for all practical controllers because no fixed values
fit all situations [13]. In the second step, the STFC is turned
on to control resource allocation in running web servers.
The scaling-factor controller is on to tuneα adaptively. In

addition, as suggested in [25], theK∆u is set to three times
larger than the one obtained in previous step to maintain the
responsiveness of the STFC during workload disturbances. The
Ke andK∆e are kept unchanged.

Finally we remark that the STFC has small overhead. For
any inputs, only two membership functions lead to nonzero
values in the resource controller. Therefore, at most four rules
are on at any time in the resource controller. Similarly, at
most four rules are on in the scaling-factor controller. It is
demonstrated in Section IV-F that there is negligible perfor-
mance difference with the STFC on and off. Furthermore, the
implementation complexity is small: our implementation of
the STFC totaled less than 100 lines of C code.

IV. PERFORMANCEEVALUATIONS

We define relative deviationR(e), which is based on root-
mean square error that is one of the most widely utilized
performance criteria [24], as the metric to measure the per-
formance of theeQoS. We have

R(e) =

√∑n
k=1 (D(k) − W (k))2 /n

D(k)
=

√∑n
k=1 e(k)2/n

D(k)
.

(11)

The relative deviation describes the size of deviation from the
reference valueD(k). Furthermore, because large deviation
contributes heavily toR(e), it reflects the transient charac-
teristics of a control system. Thus, the smaller theR(e), the
more the achieved average response time concentrates near the
reference value and the better the controller’s performance.

A. Experimental Environments and Configurations

We have conducted experiments on the PlanetLab test bed to
evaluate the performance of theeQoS in a real-world environ-
ment. The clients reside on 9 geographically diverse nodes:
Cambridge in Massachusetts, San Diego in California, and
Cambridge in the United Kingdom. We assume that premium
and basic clients are from all these nodes for fairness between
clients with different network connections. The web server
is a Dell PowerEdge 2450 configured with dual-processor (1
GHz Pentium III) and 512 MB main memory and is located in
Detroit, Michigan. During the experiments, the RTTs between
the server and the clients are around 45ms (Cambridge), 70
ms (San Diego), and 130ms (the United Kingdom).

The server workload was generated by SURGE [3]. It
was controlled by adjusting the number of concurrent user
equivalents (UEs) in SURGE. Notice that the fixed number of
UEs does not affect the representativeness (i.e., self-similarity
and high dynamics) of the generated web traffic [3]. In the
emulated web objects, the maximum number of embedded
objects in a given page was 150 and the percentage of base,
embedded, and loner objects were 30%, 38%, and 32%,
respectively. The SURGE was set up without pipelining. It is
because in practice most web browsers, including Microsoft
Internet Explorer 6.0, serialize requests so that the next one is
sent only after receiving preceding request’s response.

7

The Apache web server was used to provide web services.
It was set up with support of HTTP/1.1. The number of the
maximal concurrent child processes was set to 128. Since
QoS guarantees is most necessary when the server is heavily
loaded, we set up the environment such that the ratio between
the number of UEs and the number of child processes could
drive the server to be heavily loaded. Notice that although
large web servers such as e-Commerce servers usually have
more child processes than we configured, they also tend to
have much more clients than we simulated. Therefore, our
configuration can be viewed as an emulation of real-world
heavy-load scenarios at a small scale [22].

In the experiments with two classes, we aimed to keep
the average response time of premium class to be around 5
seconds. In the experiments with three classes, we assumed the
reference values of class 1 and class 2 were 5 and 11 seconds,
respectively. As pointed out in [5], the service quality of web
servers is rated as “good” and “average” when the average
response time of web pages is less than 5 seconds and 11
seconds, respectively. Notice that the number of classes in real
environments is usually limited. As recommended in [26], a
service provider needs to support 2 or 3 different levels of
services.

We aimed to provide guaranteed serviceonly when the
server is heavily loaded. In our experiment configurations, the
number of UEs was between 500 and 800. When the number
of UEs is less than 500, the average response time of all web
pages is around 5 seconds. Thus, it is meaningful only when
the number of UEs is no less than 500. When the number of
UEs is larger than 800, we have observed refused connections
using unmodified Apache web server. In such case, the server
becomes overloaded and admission control mechanisms, such
as those presented in [10], [41], [44], should be used to ensure
the aggregate performance of the web server.

To investigate the effect of network latency on the perfor-
mance of theeQoS, we have implemented a network-delay
simulator. It is to emulate wide-area network delay in a similar
way to [38] and dummynet [34]. In the simulated environment,
two machines are used as clients and one as the network
simulator. They have the same hardware configurations as
the server and are connected by a 100 Mbps Ethernet. We
changed the network routing in the server and client machines
so that the packets between them were sent to the simulator.
Upon receiving a packet, the simulator routes the packet to an
“ethertap” device. A small user-space program reads the packet
from the “ethertap” device, delays it, and writes it back to the
device. The packet is then routed to the ethernet. Thus, we can
control the RTT between the server and clients. Our evaluation
experiments show that the simulator is effective in emulating
wide-area network delay. For example, with the RTT set as
180 ms, ping times were showing a round trip of around 182
ms.

In the experiments on the simulated networks, the RTT
between clients and servers was set to be 40, 80, or 180ms.
They represent the transmission latency within the continental
U.S., the latency between the east and west coasts of the U.S.,

and the one between the U.S. and Europe, respectively [36].

B. Effectiveness of theeQoS

To evaluate the effectiveness of theeQoS in providing
client-perceived QoS guarantees, we have conducted experi-
ments under different workloads and network delays with two
and three client classes. In the experiments, the system was
first warmed up for 60 seconds. After that, the controller was
turned on. The size of sampling period is set to 4 seconds. The
effect of the sampling period on the performance of theeQoS
is discussed in Section IV-E. Figure 8 presents the relative
deviation of provided average web-page response times in the
experiments.

Figure 8(a) shows the relative deviations of the premium
class relative to the reference value (5 seconds). From the
figure we observe that all the relative deviations are smaller
than 35%. Meanwhile, most of them are around 20%. It means
the size of deviations is normally around 1.0 seconds.

Figure 8(b) presents the results with three classes. Because
we observe no qualitative differences between the results with
different RTTs in the simulated networks, we only present the
results where RTT was set to 180ms for brevity. From the
figure we see that most of the relative deviations are between
15% and 30%. Because the reference values of class 1 and
class 2 are 5.0 and 11.0 seconds, the results indicate the
deviation sizes are between 0.75 and 1.5 seconds for class
1 and between 1.65 and 3.3 seconds for class 2. Note that the
results shown in Figure 8 are due to experiments conducted
under different network conditions and server workloads. We
conclude from the results that theeQoS is able to guarantee
client-perceived QoS effectively in various environments.

C. Feasibility of Client-Perceived QoS Guarantees

In this subsection we investigate why it is feasible to
guarantee client-perceived QoS from server side under heavy-
load conditions. The client-perceived response time consists
of waiting time, processing time, and transmission time. The
waiting time is the latency incurred in step (4) as shown
in Section III-A. It is the time interval that starts when a
connection is accepted by the server operating system and
ends when the connection is passed to the Apache web server
to be processed. The processing time is the time that the web
server spends on processing the requests for the whole web
page, including the base HTML file and its embedded objects.
The transmission time includes the complete transfer time of
client requests and all server responses over the networks. We
instrumented the Apache web server to record the processing
time. We conducted experiments with different workloads and
network delays. Figure 9 shows the breakdown of client-
perceived response time under different network latency. For
brevity, we omit the results where RTT was set to 80ms.

From Figure 9 we observe that, when the server is heavily
loaded (the number of UEs is larger than 400), the server-
side waiting time is the dominant part of client-perceived
response time. The finding is consistent with others, such as
those in [4], [22], [33]. It is because that, when the server is

8

500 600 700 800
Workload (number of UEs)

0
10
20
30
40
50

R
el

at
iv

e
de

vi
at

io
n

(%
)

PlanetLab
RTT = 40
RTT = 80
RTT = 180

(a) Two classes.

500 600 700 800
Workload (number of UEs)

0
10
20
30
40
50

R
el

at
iv

e
de

vi
at

io
n

(%
)

PlanetLab
RTT = 180

(b) Three classes.

Fig. 8. The performance of theeQoS with two and three classes.

100 200 300 400 500 600 700 800
Workload (number of UEs)

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (

%
) waiting time

processing time
transmission time

(a) RTT = 40ms.

100 200 300 400 500 600 700 800
Workload (number of UEs)

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (

%
) waiting time

processing time
transmission time

(b) RTT = 180ms.

Fig. 9. The breakdown of response time of web pages under different RTTs.

heavily loaded, the child processes of the Apache web server
are busy in processing accepted client requests. The newly
incoming client requests then have to wait. Furthermore, we
also observe that the transmission time is only a small part
of response time when server workload is high. It indicates
that, although the service providers have no control over the
network transmissions, they are still able to control the client-
perceived response time by controlling the server-side waiting
time and processing time. The server-side QoS guarantees in
heavily loaded web servers thus is feasible in practice.

As observed in [11], network utilization is normally low. In
the work, thus, we assume the network is not highly congested.
Otherwise the RTT may become too large to provide QoS
guarantees even with lightly loaded web servers. For example,
assuming RTT is 1000ms, the retrieval of a web page with 10
embedded objects via one TCP connection takes at least 12
seconds: 1.5 seconds for establishing TCP connection and 1
second for retrieving the base HTML file and every embedded
object with serialized requests.

D. Comparison with Other Controllers

Within the eQoS framework, we also implement three
controllers: a fuzzy controller without self-tuning, a traditional
PI controller, and an adaptive PI controller using the basic
idea of [17]. The selection of linear PI controllers is because
two reasons: the PI controllers are widely used, including [17],
[22]; the STFC is a PI-like controller with nonlinear operating
functions so that the comparison is fair. In [17], the parameters
of the adaptive PI controller are adjusted according to the
admission probability of a class. In our implementation, the
parameters are adjusted according to the processing rate of a
class in a similar manner.

We have specifically tuned the fuzzy controller in an en-
vironment that the number of UEs was set to 700 and RTT

was assumed to be 180ms on the simulated networks. We
also tuned the PI controller in the same environment under
the guideline of Ziegler-Nichols method [13]. After that, we
then conducted experiments with different server workloads
and network conditions on PlanetLab and simulated networks.

Taking the performance of STFC as a baseline, we define the
performance difference between the STFC and other controller
as

PerDiff =
R(e)other − R(e)STFC

R(e)STFC
, (12)

where R(e)other and R(e)STFC are the relative deviations
of other controller and the STFC, respectively. IfPerDiff is
positive, the STFC has better performance than other controller
and vice versa. Figure 10 presents the performance difference
of the fuzzy controller, the PI controller, and the adaptive PI
controller. Due to space limitation, we only present the results
where RTT was set to 180ms.

From Figure 10(b) we observe that the STFC provides
worse services than the non-adaptive fuzzy controller when the
number of UEs is 700 and the RTT is 180ms. The behavior
is expected because a self-tuning controller cannot provide
better performance than a non-adaptive controller that has been
specifically tuned for some environment. Even under such
environment, the performance difference between the STFC
and the fuzzy controller is negligible; that is, the performance
difference is just -6%.

Under all other conditions, the STFC provides better ser-
vices than the non-adaptive fuzzy controller. That is, the
average performance difference is about 25%. Such behavior
can be observed from Figure 10(b) and Figure 10(a). Afore-
mentioned, the STFC further adjusts the output scaling factor
of the fuzzy controller adaptively according to the transient
behaviors of the web server. Such tuning is important to

9

500 600 700 800
Workload (number of UEs)

0
20
40
60
80

100
120
140

Pe
rf

 D
if

f (
%

) fuzzy controller
PI controller
adaptive PI

(a) PlanetLab.

500 600 700 800
Workload (number of UEs)

0
20
40
60
80

100
120
140

Pe
rf

 D
if

f (
%

) fuzzy controller
PI controller
adaptive PI

(b) RTT = 180ms.

Fig. 10. The performance comparison in PlanetLab and simulated networks.

compensate the effect of the process delay in resource alloca-
tion. Thus, the STFC is able to provide services with smaller
relative deviation than the fuzzy controller. The observation
also demonstrates that our analysis and design of the self-
tuning scaling-factor controller are correct.

In comparison with the PI controller, the STFC achieves
better performance even when the PI controller operates under
its specifically tuned environment. It can be observed in
Figure 10(b). When the number of UEs is 700 and RTT is
180 ms, their performance difference is 28%. From Figure 10
we observe that all performance differences of the PI controller
are larger than 60% and the average is around 75%. The
poor performance of the PI controller is due to its inaccurate
underlying model. In the PI controller, we follow the approach
in [17] and model the server as anM/GI/1 processor
sharing system. It is known that the exponential inter-arrival
distribution is unable to characterize the web server [31].
Thus, the model is inaccurate. Similarly, although the adaptive
PI improves upon the non-adaptive PI controller, it still has
worse performance than the STFC and the fuzzy controller.
Its average performance difference in relation to the STFC
is around 50%. Moreover, the PI and adaptive PI controllers
provide no means to compensate the effect of the process delay
in resource allocation.

E. Effect of the Sampling Period on QoS Guarantees

In the subsection we investigate the effect of the sampling
period on the performance of theeQoS and determine an
appropriate size. We carried out experiments with different
settings of the sampling period on both PlanetLab and sim-
ulated networks. For brevity we only show the results from
PlanetLab in Figure 11.

From the figure we observe that the relative deviation
decreases with the increase of the sampling-period size. As
shown in Figure 3(a), the percentage of requests finished
within the admitted sampling periods increases with the
increase of sampling-period size. Therefore, the controller
is able to measure the resource-allocation effect on client-
perceived response time more accurately with the increase of
the sampling period.

When the sampling-period size continues to increase, the
relative deviation increases. It is because that, with a large
sampling period, the processing rate of premium class is
adjusted less frequently than a small one. Consequently, the

0 1 2 4 8 16
Size of sampling period (second)

0.0

10

20

30

40

R
el

at
iv

e
de

vi
at

io
n

(%
)

UEs = 500
UEs = 600
UEs = 700
UEs = 800

Fig. 11. The effect of sampling period on the performance of theeQoS.

eQoS becomes less adaptive to the transient workload dis-
turbances and the relative deviation increases. Based on the
results shown in Figure 11, in our experiments, we set the size
of sampling period to 4 seconds. Notice that we do not claim
our setting of sampling period is optimal. How to determine
an optimal sampling period is part of our future work.

F. Effect of theeQoS on Server Performance

In this subsection, we investigate the effect of theeQoS on
the performance of web servers. We conducted experiments
with the eQoS (STFC on and STFC off). We conducted
experiments with different numbers of UEs for 10 minutes on
PlanetLab. To obtain an accurate average response time, the
reported results are the average without the beginning and the
ending periods: that is, the response time is averaged from the
2nd to the 9th minute. Due to space limitation, we summerize
our observations. We observe that the performance differences
between the STFC (off) and the STFC (on) is within 1%.
It indicates that the overhead of the STFC itself is small
because the controller only needs to adjust resource allocation
once a sampling period. It also indicates that the aggregate
server performance is not affected by the working-conserving
processing-rate allocation.

V. RELATED WORK

Provisioning of QoS guarantees has been an active research
topic. In practice, the client-perceived service quality is mainly
determined by both networks and web servers. Moreover,
the service quality is normally measured with respect to
whole web pages. The existing approaches, however, measured
service quality with respect to a single packet in networks or
an individual request [1], [2], [6], [9], [17], [33] or connec-
tion [22], [23], [35], [41] in web servers. In comparison, the

10

proposed frameworkeQoS aims to guarantee the QoS from
the perspective of end clients.

Early work focused on providing differentiated services to
different client classes using priority-based scheduling. For
example, in [2], the authors aimed to provide better services
to premium class than basic class by adjusting the number
or the priority of the allocated processes between the classes
on either user level or on kernel level. They, however, were
unable to guarantee the QoS a class received.

To guarantee the QoS of a class, queueing-theoretic ap-
proaches have been proposed. It is well known that the delay
upper bound in aG/G/1 is determined by the system load
and the variance of requests’ inter-arrival and service time
distributions. In the approach presented in [41], the load of a
class is adjusted by controlling its resource allocation so that
the target delay equals to the upper bound. Its performance
highly depends on the parameter estimation, such as the
variance, which is difficult to be accurate.

Traditional linear feedback control has also been applied to
control the resource allocation in web servers [1], [22], [33].
Because the behavior of a web server changes continuously,,
the performance of the linear feedback control is limited. In
comparison, our approach is model independent by taking
advantage of fuzzy control theory to manage the server-
resource allocation based on the analysis of resource-allocation
on achieved response time.

Recent work have applied adaptive control [17], [18] and
machine-learning [40] to address the lack of accurate server
model. For example, in [18], an adaptive controller based
on dynamically estimated system model is proposed. Al-
though these approaches provide better performance than non-
adaptive linear feedback control approaches under workload
disturbances, the ignorance of the process delay limits their
performance.

Fuzzy control theory has also been applied in providing QoS
guarantees. For example, in [20], the authors presented a fuzzy
control model to address the non-linear QoS requirements
of different multimedia applications under different resource
constraints. Similarly, in [21], because of the nonlinearity of
web servers, fuzzy control theory is also used to determine
an optimal number of concurrent child processes to improve
the aggregated server performance. In [30], it is applied to
dynamically adjust the delay ratios between different traffic
flows in proportional delay differentiation service model to
compensate the effect of the traffic bursty on the delay of
premium class. The objective of the STFC is different in
that its focus is on providing client-perceived end-to-end
QoS guarantees. Moreover, the STFC explicitly addresses the
inherent process delay in resource allocation.

VI. CONCLUSIONS

In the paper, we have proposed frameworkeQoS, which
to the best of our knowledge is the first one to providing
client-perceivedend-to-end QoS guarantees, based on real-
time response time measurement. Within the framework, we

have proposed a model-independent two-level STFC that ex-
plicitly addresses the process delay in resource allocation. To
evaluate the performance of theeQoS, we have implemented
the framework in Linux and carried out comprehensive exper-
iments under different workload conditions using real-world
networks on PlanetLab test bed and simulated networks. The
experimental results have shown that it is feasible to provide
client-perceived QoS guarantees in heavy-load web servers.
They also demonstrated the effectiveness of theeQoS and the
superiority of the STFC over non-adaptive fuzzy controller,
traditional PI controller, and adaptive PI controller with much
smaller deviations.

In this work, we focus on single-tiered web servers. Because
of the popularity of multi-tiered e-Commerce web sites, in
our future work we will investigate how to incorporate the
eQoS into a multi-tiered environments and its performance on
dynamic content.

REFERENCES

[1] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance
guarantees for Web server end-systems: A control-theoretical approach.
IEEE Transactions on Parallel and Distributed Systems, 13(1):80–96,
January 2002.

[2] Jussara Almeida, Mihaela Dabu, Anand Manikutty, and Pei Cao. Provid-
ing differentiated levels of service in web content hosting. InProceed-
ings of ACM SIGMETRICS Workshop on Internet Server Performance,
pages 91–102, June 1998.

[3] Paul Barford and Mark Crovella. Generating representative web work-
loads for network and server performance evaluation. InProceedings of
ACM Sigmetrics ’98 Conference, pages 151–160, June 1998.

[4] Paul Barford and Mark Crovella. Critical path analysis of TCP
transactions. IEEE/ACM Transactions on Networking, 9(3):238–248,
2001.

[5] Nina Bhatti, Anna Bouch, and Allan Kuchinsky. Integrating user-
perceived quality into Web server design. InProceedings of the
International World Wide Web Conference (WWW), pages 1–16, 2000.

[6] Nina Bhatti and Rich Friedrich. Web server support for tiered services.
IEEE Network, 13(5):64–71, 1999.

[7] Preeti Bhoj, Srinivas Ramanathan, and Sharad Singhal. Web2K:
Bringing QoS to web servers. Technical Report HPL-2000-61, HP
Laboratories, May 2000.

[8] Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng Wang,
and Walter Weiss.An Architecture for Differentiated Services. IETF,
Request for Comments 2475, December 1998.

[9] Josep M. Blanquer, Antoni Batchelli, Klaus Schauser, and Rich Wolski.
Quorum: Flexible quality of service for Internet services. InProceed-
ings of Symposium on Networked Systems Design and Implementation
(NSDI), 2005.

[10] Xianping Chen and Prasant Mohapatra. Performance evaluation of ser-
vice differentiating Internet servers.IEEE Transactions on Computers,
51(11):1368–1375, November 2002.

[11] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Papagiannaki,
and Christophe Diot. Analysis of point-to-point packet delay in an
operational network. InProceedings of IEEE Infocom, Hong Kong,
March 2004.

[12] Constantinos Dovrolis, Dimitrios Stiliadis, and Parameswaran Ra-
manathan. Proportional differentiated services: Delay differentiation and
packet scheduling.IEEE/ACM Transactions on Networking, 10(1):12–
26, 2002.

[13] Gene F. Franklin, J. David Powell, and Abbas Emami-naeini.Feedback
Control of Dynamic Systems. Prentice Hall, 4th edition, 2002.

[14] Mohamed El Gendy, Abhijit Bose, Seong-Taek Park, and Kang G. Shin.
Paving the first mile for QoS-dependent applications and appliances. In
Proceedings of International Workshop on Quality of Service (IWQoS),
pages 245–254, 2004.

[15] Dan Grossman. New Terminology and Clarifications for Diffserv.
Network Working Group, Request for Comments 3260, April 2002.

11

[16] Felix Hernandez-Campos, Kevin Jeffay, and F. Donelson Smith. Track-
ing the evolution of web traffic: 1995-2003. InProceedings of Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 16–25, 2003.

[17] Abhinav Kamra, Vishal Misra, and Erich Nahum. Yaksha: A self
tuning controller for managing the performance of 3-tiered websites. In
Proceedings of International Workshop on Quality of Service (IWQoS),
pages 47–56, 2004.

[18] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. Triage:
Performance isolation and differentiation for storage systems. In
Proceedings of International Workshop on Quality of Service (IWQoS),
pages 67–76, 2004.

[19] Jasleen Kaur and Harrick Vin. Providing deterministic end-to-end
fairness guarantees in core-stateless networks. InProceedings of
International Workshop on Quality of Service (IWQoS), pages 401–421,
2003.

[20] Baochun Li and Klara Nahrstedt. A control-based middleware frame-
work for quality of service adaptations.IEEE Journal on Selected Areas
in Communications, 17(9):1632–1650, September 1999.

[21] Xue Liu, Lui Sha, Yixin Diao, Joesph L. Hellerstein, and Sujay Parekh.
Online response time optimization of apache web server. InProceedings
of International Workshop on Quality of Service (IWQoS), pages 461–
478, 2003.

[22] Chenyang Lu, Tarek F. Abdelzaher, John A. Sankovic, and Sang H. Son.
A feedback control approach for guaranteeing relative delays in web
servers. InProceedings of IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2001.

[23] Ying Lu, Tarek F. Abdelzaher, Chenyang Lu, Lui Sha, and Xue Liu.
Feedback control with queueing-theoretic prediction for relative delay
guarantees in web servers. InProceedings of IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 208–
217, May 2003.

[24] Dimitris G. Manolakis, Vinay K. Ingle, and Steplen M. Kogon.Sta-
tistical and Adaptive Signal Processing. The McGraw-Hill Companies,
2000.

[25] Rajani K. Mudi and Nikhil R. Pal. A robust self-tuning scheme for PI-
and PD-type fuzzy controllers.IEEE Transactions on Fuzzy Systems,
7(1):2–16, February 1999.

[26] Kathleen Nichols, Van Jacobson, and Lixia Zhang.A Two-bit Differenti-
ated Services Architecture for the Internet. IETF, Request for Comments
2638, July 1999.

[27] David P. Olshefski, Jason Nieh, and Erich Nahum. ksniffer: Determining
the remote client perceived response time from live packet streams. In
Proceedings of Usenix Operating Systems Design and Implementation
(OSDI), 2004.

[28] Abhay K. Parekh and Robert G. Gallager. A generalized processor
sharing approach to flow control in integrated services networks: The
single-node case.IEEE/ACM Transactions on Networking, 1(3):344–
357, 1993.

[29] KyoungSoo Park, Vivek S. Pai, Larry Peterson, and Zhe Wang. CoDNS:
Improving DNS performance and reliability via cooperative lookups. In
Proceedings of Usenix Operating Systems Design and Implementation
(OSDI), 2004.

[30] Sunthiti Patchararungruang, Saman K. halgamuge, and Nirmala Shenoy.
Optimized rule-based delay proportion adjustment for proportional dif-
ferentiated services.IEEE Journal on Selected Areas in Communica-
tions, 23(2):261–276, February 2005.

[31] Vern Paxson and Sally Floyd. Wide area traffic: The failure of possion
modeling. IEEE/ACM Transactions on Networking, 3(3):226–244, June
1995.

[32] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A
blueprint for introducing disruptive technology into the internet. In
Proceedings of ACM Workshop on Hot Topics in Networking (HotNets),
2002.

[33] Prashant Pradhan, Renu Tewari, Sambit Sahu, Abhishek Chandra, and
Prashant Shenoy. An observation-based approach towards self-managing
web servers. InProceedings of International Workshop on Quality of
Service (IWQoS), 2002.

[34] Luigi Rizzo. Dummynet: A simple approach to the evaluation of network
protocols.SIGCOMM Computer Communnication Review, 27(1):31–41,
1997.

[35] Lui Sha, Xue Liu, Ying Lu, and Tarek F. Abdelzaher. Queueing model
based network server performance control. InProceedings of IEEE
Real-Time Systems Symposium (RTSS), pages 81–90, 2002.

[36] Srinivas Shakkottai, R. Srikant, Nevil Brownlee, Andre Broido, and
K. Claffy. The RTT distribution of TCP flows in the Internet and its
impact on TCP-based flow control. Technical report, The Cooperative
Association for Internet Data Analysis (CAIDA), 2004.

[37] Francis Greg Shinskey.Process Control Systems: Application, Design,
and Tuning. McGraw-Hill, 4th edition, 1996.

[38] Joan Slottow, Ali Shahriari, Michael Stein, Xiao Chen, Chris Thomas,
and Philip B. Ender. Instrumenting and tuning dataview—a networked
application for navigating through large scientific datasets.Software
Practice and Experience, 32(2):165–190, November 2002.

[39] Wei Sun and Kang G. Shin. Coordinated aggregate scheduling for im-
proving end-to-end delay performance. InProceedings of International
Workshop on Quality of Service (IWQoS), 2004.

[40] Vijay Sundaram and Prashant Shenoy. A practical learning-based
approach for dynamic storage bandwidth allocation. InProceedings
of International Workshop on Quality of Service (IWQoS), 2003.

[41] Bhuvan Urgaonkar and Prashant Shenoy. Cataclysm: Handling extreme
overloads in Internet applications. InProceedings of the International
World Wide Web Conference (WWW), May 2005.

[42] Thiemo Voigt, Renu Tewari, Douglas Freimuth, and Ashish Mehra.
Kernel mechanisms for service differentiation in overloaded web servers.
In Proceedings of the Usenix Annual Technical Conference, June 2001.

[43] Jianbin Wei and Cheng-Zhong Xu.eQoS: Provisioning of client-
perceived end-to-end QoS guarantees in web servers. Tech-
nical report, Wayne State University, February 2005. Online:
http://www.cic.eng.wayne.edu/∼jbwei/self-tuning-fuzzy.pdf.

[44] Matt Welsh and David Culler. Adaptive overload control for busy
Internet servers. InProceedings of USENIX Symposium on Internet
Technologies and Systems (USITS), 2003.

12

