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ABSTRACT
We present a dynamic voltage scaling (DVS) technique that mini-
mizes system-wide energy consumption for both periodic and spo-
radic tasks. It is known that a system consists of processors and a
number of other components. Energy-aware processors can be run
in different speed levels; components like memory and I/O subsys-
tems and network interface cards can be in a standby state when
they are active but idle. Processor energy optimization solutions
are not necessarily efficient from the perspective of systems. Cur-
rent system-wide energy optimization studies are often limited to
periodic tasks with heuristics in getting approximated solutions. In
this paper, we develop an exact dynamic programming algorithm
for periodic tasks on processors with practical discrete speed lev-
els. The algorithm determines the lower bound of energy expen-
diture in pseudo-polynomial time. An approximation algorithm is
proposed to provide performance guarantee with a given bound in
polynomial running time. Because of their time efficiency, both the
optimization and approximation algorithms can be adapted for on-
line scheduling of sporadic tasks with irregular task releases. We
prove that system-wide energy optimization for sporadic tasks is
NP-hard in the strong sense. We develop (pseudo-) polynomial-
time solutions by exploiting its inherent properties.

1. INTRODUCTION
Power management is important for battery-powered embedded

systems. Dynamic voltage scaling (DVS) is one of the most ef-
fective techniques in power-aware design because the energy con-
sumption of a CMOS circuit has a superlinear dependency on the
supply voltage, whereas an approximately linear relationship be-
tween voltage and delay.

Conventional DVS algorithms consider only processor energy,
with a focus on optimizing dynamic power consumption. More re-
cently, as leakage power is growing rapidly with each technical gen-
eration, researchers study the problem of reducing both the static
and dynamic power of a processor [10] [15] [8]. In addition to pro-
cessors, most applications use other system components during ex-
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ecution, such as memory, flash drives, and wireless interface. Most
of the components support multiple power states, such as active,
standby (active but idle), and shutdown. If the components need to
be active during application execution, processor speed slowdown
may lead to an increase of the standby time of other components.
The power of those components in a standby state can be signif-
icant. For examples the standby power of memory and wireless
interface can be as large as 0.4W and 1W in comparison with 2W
CPU power [7]. Since the overall system energy consumption could
be adversely affected by processor slowdown, it is necessary to con-
sider resource standby power to compute energy efficient slowdown
factors.

Existing studies on system-wide energy optimization focus on
periodic tasks with complete timing information known in advance.
Even for periodic tasks, it is still hard to get an accurate analysis
on a processor with discrete voltage levels. Researchers have tried
to solve a simplified version of the problem with relaxed timing
requirement [3], apply heuristics to get approximated solution [7],
assume a processor with continuous speed levels [17], and focused
on the effect of non-preemptive shared resources on system-level
energy conservation [2].

The first contribution of this paper is system-wide energy op-
timization solutions for periodic tasks on processors with limited
number of speed scales. We prove that the minimization problem
is an instance of the NP-hard Multiple-Choice 0-1 Knapsack Prob-
lem (MCKP) with non-integer coefficients. Existing solutions to
MCKP assume integer coefficients, which is invalid in energy opti-
mization. We develop a dynamic programming algorithm to solve
the energy optimization problem in pseudo-polynomial time. As
the worst case running time may grow rapidly with large number of
tasks, we propose a fully polynomial time approximation scheme
(FPTAS) whose worst case performance can be bounded by a pre-
defined value. Experimental results show that the optimal solution
leads to an energy consumption bound much lower than energy con-
sumption of the heuristic by Jejurikar and Gupta [7]. The perfor-
mance degradation of the approximation solution can be bounded
by the predefined value with a much smaller average error.

Many typical real-time systems have both periodic and sporadic
tasks. A sporadic task model is effective for applications with un-
predictable arrival times and external events such as operator’s com-
mands. The irregular releases of sporadic tasks call for online de-
cision making with all timing information known only after task
releases. Studies of online sporadic tasks energy saving based on
DVS were limited to reduction of dynamic energy consumption of
processors, rather than system; see [16] for a recent review.

The second contribution of this paper is system-wide energy op-
timization solutions for online scheduling of sporadic tasks. The
speed assignment is optimal in the sense that the decision is made
online without assumptions about future task releases. We show



the problem is essentially a Multidimensional Multiple-choice 0-1
Knapsack Problem (MMKP). In general, there is neither pseudo-
polynomial solutions nor FPTAS for an MMKP. In this paper, we
present both a pseudo-polynomial algorithm and an FPTAS by ex-
ploiting inherent properties of sporadic task scheduling, in which
the feasibility of a task does not depend on tasks finished later.
Experimental results show that energy consumption of the optimal
solution can improve upon a recently proposed competitive algo-
rithm [16] by up to 57%. The approximation scheme offers a better
trade-off between energy-efficiency and time complexity.

The rest of the paper is organized as follows. Section 2 reviews
related work. Section 3 provides power and task models of the
system. We present the optimal and approximated solutions for pe-
riodic tasks and sporadic tasks in Section 4 and Section 5, respec-
tively. We evaluate the performance of the algorithms in Section 6.
Section 7 concludes the article.

2. RELATED WORK
Extensive studies on energy savings have been conducted for pe-

riodic tasks under DVS. An emphasis was on processor energy sav-
ings. System-wide energy expenditure considering standby power
of various system components is a recent focus [3] [17] [2] [7].

Choi et al. proposed an interval based frequency setting policy
that would minimize system power consumption of a program sub-
ject to a constraint on performance loss in terms of increased exe-
cution time [3]. Their approach can be best applied to applications
with soft deadlines. Zhuo and Chakrabarti considered processors
with continuous speed levels and proposed a static speed setting
policy, and extensions to online slack distribution and preemption
control [17]. Cheng and Goddard studied system-wide energy sav-
ings of periodic tasks with non-preemptive shared resources [2].
They considered the case when devices have non-zero transition
delays and did not put devices in sleep in order to guarantee all jobs
meet their deadlines.

A closely related work is due to Jejurikar and Gupta [7]. They
considered periodic tasks on a processor with discrete speed lev-
els and proposed a heuristic algorithm to the system-wide energy
optimization problem. The algorithm starts by setting all tasks to
their critical speeds and adjust s speed of a task that can lead to the
minimum energy increase per unit time. The adjustment continues
until a feasible schedule is found. Although the algorithm is more
efficient than traditional DVS, it remains unclear how good the al-
gorithm is and whether there exists a solution with more energy sav-
ings. In this paper, we answered these questions by proposing both
an optimal solution and an approximation scheme with bounded
performance degradation.

Furthermore, we adapt the optimal and approximated solutions
to online scheduling of sporadic tasks. A general online DVS ap-
proach for sporadic tasks is to set processor to the lowest speed
at which there is no deadline miss. For example, Zhong and Xu
proposed an adaptive algorithm based on linear filter theories for
sporadic tasks on processors with continuous speed levels [16].
The time-variant algorithm is able to find the lowest feasible speed
without future task release knowledge. In this paper, we consider
system-wide energy minimization for sporadic tasks on processors
with a more practical discrete speed scale.

The connection between DVS for periodic tasks energy optimiza-
tion and an MCKP was initially established by Mejı́a-Alvarez, Lev-
ner, and Mossé [11]. They modeled the problem as an MCKP, trans-
formed it to a standard knapsack problem, and adapted a heuristic
algorithm to solve the problem. Chen, Kuo, and Shih formulated
energy minimization as a Subset Sum Problem, a special case of
knapsack problem [1]. They then proposed an approximation so-

lution with performance guarantee. Rakhmatov and Vrudhula pre-
sented an MCKP formulation for energy minimization with focus
on the impact of battery recovery and discharging rate [12].

We note that all related formulations targeted at dynamic en-
ergy reduction of a processor. System-wide energy optimization in-
volves other system components in addition to a CPU. Their standby
states make the lowest feasible speed not necessarily energy effi-
cient. In this paper, we prove that the energy optimization for peri-
odic tasks is an MCKP and develop both optimal and approximated
solutions. In addition, existing studies for system energy optimiza-
tion are limited to periodic tasks. We make one step forward by
connecting online DVS for sporadic tasks to an MMKP.

We note that there exist studies that model intra-task DVS, which
has many scaling points during the execution of a task, as special
cases of Subset Sum [14] and knapsack problems [13]. In contrast,
we consider inter-task DVS due to its ease of implementation and
less number of voltage switching.

3. PRELIMINARIES

3.1 Task Model
We study two types of hard real-time tasks, periodic and spo-

radic tasks. We assume all tasks to be independent and preemptive,
scheduled by the Earliest Deadline First (EDF) policy. Consider n
periodic tasks in a uniprocessor system. Task i is characterized by
a tuple {Ci, Ti, Di}, where Ti denotes task period and Ci is the
execution time under the maximum frequency. The relative dead-
line Di is assumed to be equal to task period Ti. To guarantee the
task set is schedulable, we assume the cumulative utilization does
not exceed one, i.e.,

n
i=1 Ci/Ti ≤ 1.

Another type of hard real-time task under consideration is spo-
radic tasks. Each sporadic task, denoted by a tuple {Ai, Ci, Di}, is
characterized by its release time Ai, execution time Ci, and dead-
line Di. The arrival time of a sporadic task can be arbitrary with
irregular intervals. We therefore do not assume knowledge of fu-
ture task release at the time of speed assignment and parameters of
a sporadic task are known only after its release.

3.2 System Energy Model
We consider a computing system with a DVS processor. The

processor can scale its supply voltage and clock speed with m dis-
crete levels within its operational ranges, [fmin, fmax]. We define
a slowdown factor S as the normalized clock speed with respect to
the maximum frequency. That is, S = f/fmax, Smin ≤ S ≤ 1
where Smin = fmin/fmax. Note that whenever the speed of a pro-
cessor is scaled, its supply voltage is scaled according to a roughly
linear relation. We assume negligible voltage switching overhead.

Let Si denote the slowdown factor of task i. Its actual execution
time is Ci/Si and the scaled utilization is Ci

TiSi
. As Si can be set

to any clock rate, we use Sij to denote task i being executed at the
jth speed. Similarly, we use uij and eij to denote scaled utilization
and energy consumption of task i under speed j.

Let Pcpu(S) denote the power consumption of the processor at
a slowdown factor S. It includes both a dynamic power and a
static (leakage) power consumption. Considering energy consump-
tion per cycle, recent studies concluded the existence of critical
speed [8] that minimizes processor energy. Beyond the speed, static
energy becomes dominant and processor slowdown is no longer en-
ergy efficient. We denote the slowdown factor of the processor crit-
ical speed as Scrit p.

In addition to a processor, the system under consideration con-
sists of other resources. Power consumption of a resource includes
both active power and standby power. It is assumed that active and



standby power of resources are independent of processor speed. If
a resource is not used by an active task, it is shut down for energy
saving with zero power. Task i requires a subset �i of the resources
for execution. Standby energy of resource j for task i, denoted by
Estd

ij , is equal to its standby power, denoted by P std
ij , multiplied by

task execution time, i.e., Estd
ij = P std

ij · Ci/Si. Similarly, active
energy of task i, denoted by Eact

i , is resource active power multi-
plied by access time. We assume access time remains constant with
respect to Si. As a result, the active energy consumption does not
change with Si. The system energy for task i under a slowdown
factor Si becomes

Ei(Si) = Pcpu(Si) · Ci

Si
+

j∈�i

P std
ij · Ci

Si
+ Eact

i . (1)

Similar system-level energy models have been defined in [17] [3]
[7], as well.

In a processor with a limited number of speed levels, the critical
speed of task i is the one that minimizes Ei(Si). We denote it
as Scrit i. Due to the effect of resource standby power, Scrit i is
no smaller than Scrit p. The minimum slowdown factor of task
i, denoted by Smin i, is the larger value of the slowdown under
minimum processor speed, Smin, and the critical slowdown factor,
Scrit i. That is Smin i = max{Smin, Scrit i}. The set of speeds
for task i, represented by Mi, is a subset of available slowdown
factors from Smin i to 1. Its cardinality mi can be much smaller
than the possible number of processor speeds m if the task has a
large critical speed (or slowdown factor equivalently).

4. PERIODIC TASKS

4.1 Problem Formulation
For a periodic task set, we consider a hyper-period T , which is

the Least Common Multiple of T1, ..., Tn. As the schedule repeats
every T time units, our objective is to minimize the overall energy
consumption during the hyper-period. We formulate the optimal
voltage scheduling problem as

minimize

n

i=1

T

Ti
Ei(Si) (2)

subject to

n

i=1

Ci

TiSi
≤ 1 (3)

Smin i ≤ Si ≤ 1, 1 ≤ i ≤ n. (4)

The constraint (3) ensures the task set under EDF scheduling is
feasible. We show in Theorem 4.1 that the optimization problem is
NP-hard.

THEOREM 4.1. The energy-minimization problem for periodic
tasks defined by (2)-(4) is NP-hard.

Proof: The theorem can be proved by a reduction from the Multiple-
Choice Knapsack Problem (MCKP) [9] with 0-1 variables, which
is NP-hard. Details are omitted. �

4.2 Optimal Solution
Studies showed that MCKP can be solved optimally in pseudo-

polynomial time using dynamic programming [4]. Its optimal so-
lution could be achieved if all its coefficients are integers. To apply
this solution to the energy optimization problem with non-integer
coefficients, a straight-forward approach is to scale and round the
energy or utilization values to integers. However, it is only an
approximation and it remains unclear to what extend we should

scale the values. In the following, we develop a dynamic program-
ming algorithm for the energy optimization problem with multiple
choices of CPU speed.

Consider a pair of two values (ūik, ēik) as a state, where ēik

denotes the energy sum of the first i tasks corresponding to the ac-
cumulated utilization ūik. All states of task i form a list

Li = 〈(ūi1, ēi1), (ūi2, ēi2), ..., (ūini , ēini)〉,
where ni is the number of states after task i is enumerated. Ini-
tially, we have list L0 with zero energy and utilization values. List
Li is obtained in four steps, as shown in Algorithm 1. We first get a
number of lists L′

ij by adding utilizations and energy values of task
i under each speed j ∈ Mi to states in list Li−1. We denote the
componentwise addition as L′

ij = Li−1 ⊕ (uij , eij). Secondly, we
merge the lists L′

ij into one list in non-decreasing order of energy
sums. In the third step, we eliminate all non-feasible states in line 7.
A state will not result in a feasible solution if the accumulative uti-
lization of the partial solution and the minimum utilization (under
the maximum speed) of the remaining tasks exceeds one. Finally,
we prune the list by applying the following dominance criterion.

Dominance Criterion: If two states (ūij , ēij),(ūik, ēik) in list Li

satisfy ūij > ūik and ēij ≥ ēik, or ūij ≥ ūik and ēij > ēik, then
the former state is said to be dominated by the latter.

A dominated state will not enter the optimal solution and can
be removed from the list. Intuitively, if a state uses more energy
and requires larger utilization than another state, it can always be
replaced by the latter one in each iteration. The smallest state of
a list is referred as the state with the smallest energy sum. The
procedure Prune-Lists() finds the list of undominated states in L′

and returns it as L′′. Denote the smallest states in L′ and L′′ as
(ū′, ē′) and (ū′′, ē′′), respectively. As we consider the states in
non-decreasing order of energy sums, we have ē′ ≥ ē′′. If ū′ < ū′′,
neither state is dominated by the other and we add state (ū′, ē′)
to the end of list L′′. If ū′ ≥ ū′′, state (ū′, ē′) is dominated by
(ū′′, ē′′) or the two states have the same energy utilization values.
We skip the former state.

Algorithm 1 Energy minimization for periodic tasks using dynamic
programming.

1: L0 = 〈(0, 0)〉
2: for i = 1 to n do
3: for all speeds j ∈ Mi do
4: L′

ij = Li−1 ⊕ (uij , eij)

5: end for
6: merge L′

ij into a list L′
i in non-decreasing order of energy

7: delete all states in L′
i with ū + n

k=i+1 Ck/Tk > 1

8: Li = Prune-Lists(L′
i)

9: end for
10: return the smallest state in Ln

procedure PRUNE-LISTS(L′)
add the state (0,∞) to the end of list L′
L′′ = ∅
repeat

choose and delete the smallest state (ū′, ē′) from L′
if (ē′ < ∞) then

let (ū′′, ē′′) be the smallest state in L′′, ū′′ = ∞ if L′′ == ∅
if (ū′ < ū′′) then

add (ū′, ē′) to the end of list L′′
end if

end if
until ē′ = ∞
return L′′

end procedure

Consider the running time of the ith iteration adding task i. Lines
3-5 are linear in the number of states in L′

i, |L′
i|, which is equal to



the multiplication of |Li−1| and the number of speeds for task i.
Since L′

ij are sorted lists, the running time of the merging of the
lists into one sorted list will multiply the sum of the lengths of the
lists, |L′

i|, by the time to choose the lowest energy value. As the
minimum energy value can be determined in no more than mi com-
parisons, line 6 can be completed in O(mi|L′

i)|. Lines 7 and 8 can
be completed in O(|L′

i|). As a result, the running time of adding
task i is O(mi|L′

i|). Let the number of states in L′
i be bounded by

U , i.e., max1≤i≤n |L′
i| ≤ U . An upper bound of the running time

adding n tasks is O( n
i=1 miU). Similarly, the necessary memory

requirement of the algorithm is bounded by the number of states in
a list. As we only need to keep the latest list in Algorithm 1, the
space requirement would be in the order of O(U).

Note that Algorithm 1 only gives the minimum energy value but
does not explicitly return the corresponding optimal speed settings.
We can get the speed setting by extending the state to a tuple of
three values (ūik, ēik, j), with j as the speed index of task i. The
optimal speed settings is constructed by backtracking the n lists.
Starting from task n, we find the speed with accumulative utiliza-
tion closest to one, update utilization under the assigned speed,
and repeat the procedure for the remaining tasks. A simple upper
bound of the running time of backtracking is O(nU), which does
not change the order of the overall time complexity. However, we
need to keep lists Li of all iterations, which would lead to a space
complexity as O(nU). In short, the time and space complexities in
getting the optimal speed settings are O( n

i=1 miU) and O(nU).
We include modifications for backtracking the speed settings in Al-
gorithm 2.

4.3 An Approximation Scheme
States in Algorithm 1 can grow rapidly and it might be computa-

tionally expensive to get the optimal solution with a large number of
tasks and speed levels. Practically, it is often not necessary to find
the optimal solution with limited time and resources. An approxi-
mation algorithm is more desirable if it can be finished in reason-
able time and can provide a nearly optimal performance, especially
with a worst case performance bound. The quality of approxima-
tion is given by a relative performance ratio. An algorithm is said
to be an r-approximation scheme if for a given value of r ∈ (0, 1),
we have (EA − E∗)/E∗ ≤ r, where EA and E∗ are the energy
consumption of the approximated and the optimal solutions. A de-
sirable approximation scheme should have a running time which
increases with polynomial time in both the number of tasks and the
performance ratio. This leads to a classification of schemes called
fully polynomial time approximation scheme (FPTAS) [9]. We will
propose an FPTAS for the energy optimization problem.

The approximation scheme works by reducing the number of
states in each iteration. We use Emin and Emax to denote the lower
and upper bounds of energy consumption of n tasks, when all tasks
run at their minimum and the maximum speeds respectively. The
basic idea is to divide the energy values into a number of groups
each of length ε̄. We will show how to determine the constant value
ε̄ later. Each energy value will fall into one of the group. The scaled
energy for task i under speed j and group size ε̄, denoted as eij(ε̄),
is then rounded up to the next integer, i.e., eij(ε̄) = 
 eij

ε̄
�, which

will be used to represent the energy values in each group. As a re-
sult of the rounding up, the number of states can be reduced greatly
so are the running time and space required to solve the scaled prob-
lem.

Let sε̄
i be the optimal speed index of task i for the scaled problem,

which is not necessarily the same as the optimal speed settings of
the original problem s∗i . Denote energy consumption of the scaled

problem with group length ε̄ as E ε̄. We have

E ε̄ =

n

i=1

ei,sε̄
i
≤

n

i=1

ε̄

ei,sε̄

i

ε̄
� ≤

n

i=1

ε̄
ei,s∗i
ε̄

�

≤
n

i=1

ε̄(
ei,s∗i

ε̄
+ 1) =

n

i=1

(ei,s∗i + ε̄) = E∗ + nε̄. (5)

The second inequality is due to the fact that the minimum energy
value of the scaled problem is no larger than the energy under the
speed settings of the original optimal solution.

According to (5), the absolute error of the approximated solution
is at most nε̄. To bound the relative error below a given ratio r, we
must have

E ε̄ − E∗

E∗ ≤ nε̄

E∗ ≤ r.

Solving the inequality for ε̄, we get

ε̄ ≤ rE∗

n
. (6)

The right-hand side of (6) can be bounded by rEmin/n. Hence,
choosing the constant ε̄ according to rEmin/n will satisfy the con-
dition (6) and bound the relative performance error under r. We list
an outline of the approximation in Algorithm 2.

Algorithm 2 A fully polynomial time approximation scheme for
periodic tasks.

1: L0 = 〈(0, 0, 0)〉
2: calculate Emin and set ε̄ = rEmin

n
3: for i = 1 to n do
4: for all speeds j ∈ Mi do
5: L′

ij = Li−1 ⊕ (uij , � eij

ε̄
	, j)

6: end for
7: merge L′

ij into a list L′
i in non-decreasing order of energy

8: delete all states in L′
i with ū + n

k=i+1 Ck/Tk > 1

9: Li = Prune-Lists(L′
i)

10: end for
11: backtrack the lists from Ln to L1 to get the speed settings Sε̄

12: find the smallest state in Ln, denoted as (ū, ē, j)
13: return speed settings Sε̄ and state (ū, ē, j)

With chosen group length ε̄, we can determine the total number
of undominated states by

U =
Emax − Emin

ε̄
= (

Emax

Emin
− 1)

n

r
=

γn

r
,

where γ = Emax/Emin − 1. Replacing U in the running time of
the optimal solution, we get a time complexity of O( n

i=1 mi
γn
r

),
which is polynomial in the number of tasks, speed levels, and 1/r.
The approximated solution in Algorithm 2 is an FPTAS for the en-
ergy optimization problem for periodic tasks.

5. SPORADIC TASKS

5.1 Problem Formulation
Due to the irregular release times of sporadic tasks, we consider

online scheduling with task timing parameters known only after
task releases. When there is a new task release, we first deter-
mine whether the task should be admitted by an acceptance test
as suggested in [5]. Suppose there are n ready tasks sorted in non-
decreasing order of deadlines. Let C̄i, D̄i denote the remaining
execution time and deadline of task i. We define the maximum in-
stantaneous utilization of all tasks Umax as Ui = i

j=1 C̄j/D̄j



and Umax = max1≤i≤n Ui. The task will not be admitted if
Umax > 1.

Once the task is accepted, we will determine a speed assignment
according to all ready tasks with the objective to minimizing en-
ergy consumption of all the tasks. For simplicity, we will consider
a set of tasks released at time zero. In the general case for tasks
released at different times, we can easily adapt the formulation by
considering only ready tasks and by changing Ci, Di to residue ex-
ecution times and deadlines. The optimal speed assignment can be
formulated as

minimize

n

i=1

Ei(Si) (7)

subject to

k

i=1

Ci

Si
≤ Dk, 1 ≤ k ≤ n (8)

Smin i ≤ Si ≤ 1, 1 ≤ i ≤ n. (9)

The set of constraints in (8) ensures that the schedule is feasible for
all tasks. The problem is also NP-hard, as shown in Theorem 5.1.

THEOREM 5.1. The energy-minimization problem for sporadic
tasks defined by (7)-(9) is NP-hard in the strong sense.

Proof: The theorem can be proved by a reduction from the Multidi-
mensional Multiple-Choice Knapsack Problem (MMKP) with 0-1
variables, which is NP-hard in the strong sense. �

5.2 Optimal and Approximated Solutions
Theorem 5.1 implies that any optimal solutions to (7)-(9) will

lead to strictly exponential computational times and there is no FP-
TAS. However, we will show that by investigating inherent prop-
erties of the energy minimization problem, we are able to find a
pseudo-polynomial solution and an FPTAS with bounded perfor-
mance degradation in moderate running time.

We assume the tasks have been sorted in non-decreasing order of
their deadlines. Task k will finish before its deadline as long as the
execution time sum of the first k tasks does not exceed Dk; it is not
necessary to consider tasks completed later. This enables us to sat-
isfy the constraints (8) one at each iteration. For example, after task
i is added and we have a pruned list Li, we find all feasible states
in Li satisfying the constraints of task i and its feasibility remains
satisfied in later iterations. Therefore, after all the iterations, we get
a list of states satisfying all the n constraints.

Algorithm 3 lists principles of sporadic tasks speed assignment
extended from Algorithm 1. We use (tij , eij , j) to characterize
states in a list, where tij is the execution time of task i under
speed j. The presented algorithm has a worse case complexity
O( n

i=1 miU) in running time and O(nU) in space.

Algorithm 3 Energy minimization for sporadic tasks using dy-
namic programming.

1: L0 = 〈(0, 0, 0)〉
2: for i = 1 to n do
3: for all speeds j ∈ Mi do
4: L′

ij = Li−1 ⊕ (tij , eij , j)

5: end for
6: merge L′

ij into a list L′
i in non-decreasing order of energy

7: delete all states in L′
i with t̄ > Di

8: Li = Prune-Lists(L′
i)

9: end for
10: backtrack the lists from Ln to L1 to get the speed settings S∗
11: return S∗ and the smallest state in Ln

Note that the speed assignment is optimal only in the sense that
it minimizes the energy consumption in executing all tasks without
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Figure 1: System energy consumption for periodic tasks.

assumption about future task releases. The energy consumption
could be further reduced with more knowledge about future task
release times, which would lead to an offline algorithm.

It is not difficult to see that Algorithm 3 can be extended to an FP-
TAS in a similar way to the approximation technique in Section 4.3.
We omit the details for brevity.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness of the proposed al-

gorithms in energy savings for both periodic and sporadic tasks. We
consider a DVS processor with five processor speed levels similar
to the Intel’s XScale [6] 150MHz, 400MHz, 600MHZ, 800MHz,
and 1000MHz. Power consumption is 80mW, 170mW, 400mW,
900mW, and 1600mW respectively. We assume negligible voltage
switching overhead and CPU idle power. In addition to the pro-
cessor, the system has three other resources with standby power
consumption of 0.2W, 0.4W, and 1W, labeled in integers from 1 to
3. These are typical values for memory, flash drives, and wireless
interface. Standby time for the resources as a percentage of task
execution time is assumed to be in the range of [20%, 60%], [10%,
25%], and [5%, 20%], respectively. The values of standby power
and time periods were based on the experimental setting of [7].

6.1 Periodic Tasks
We first evaluate the effectiveness of the proposed algorithms for

periodic tasks. Tasks were assigned a random period Ti in the range
[10ms, 120ms]. We varied the processor utilization from 0.1 to 1
in a step 0.1. For each utilization value, we generated 20 task sets,
each containing 5 tasks. Utilization of each task, Ui, was randomly
chosen with the total utilization. Execution time of each task at the
maximum processor speed was set to Ui · Ti. We assume the tasks
have resource requirement ∅, {1}, {1, 2}, {1, 3}, and {1, 2, 3}.

We compare the proposed scheduling policy, referred to as OPT-
P, with the heuristic algorithm CS-DVS [7] in Fig. 1. As critical
slowdown factors of all tasks are no lower than 0.4, it is not energy-
efficient to set CPU below the speed. Both polices set the processor
speed to 0.4 for utilizations up to 40% by working at the critical
speed. We have omitted those values to improve readability. The
reported energy consumption is normalized with respect to OPT-
P. For all utilization values, CS-DVS consumes up to 16% more
energy than the optimal solution. The difference can be in part
explained by the fact that CS-DVS terminates as soon as it finds a
feasible solution. It may end up with a total processor utilization far
less than 1. Another observation is that the approximation schemes
can bound the performance degradation well below their worst case
values. For example, with a given ratio 0.1, the average error rela-
tive to the optimal solution is no larger than 3%. A small ratio such
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Figure 2: System energy consumption for sporadic tasks.

as 0.01 can provide a nearly optimal solution with a polynomial
complexity.

6.2 Sporadic Tasks
We evaluated the proposed online scheduling algorithm for spo-

radic tasks in comparison with a recent time-variant DVS algorithm
(TV-DVS) for online sporadic tasks [16]. Since the competitor is
based on a continuous speed level, we rounded computed speed up
to its nearest neighbor. We generated a group of sporadic tasks with
10 ms minimal interarrival time. The maximum utilization of each
task was set randomly under the constraint that the accumulative
utilization of all tasks at their maximum release rates does not ex-
ceed one. Task deadlines were drawn from [10ms, 120ms]. Execu-
tion time of a task is a multiplication of its maximum utilization and
deadline. Interarrival times of a task were chosen from an exponen-
tial distribution with averages ranging from 20ms to 50ms. Each
task was randomly assigned a subset of the available resources.

Fig. 2 shows the results due to TV-DVS, the proposed algorithm
(OPT-S), and the approximation algorithms for a 10 minutes run.
It is expected that TV-DVS consumes much more energy without
considering the impact of critical speed. When the number of tasks
is small, energy consumption of TV-DVS can be as large as 2.3
times that of OPT-S. The performance difference is mainly due to
the inefficiency of TV-DVS in operating on speeds lower than criti-
cal speeds. As the number of tasks increases, system utilization in-
creases so that TV-DVS improves its performance by running tasks
at higher speeds. However, as TV-DVS assumes a processor with
continuous speed levels and assumes identical power characteristics
of all tasks, the performance gap can still be as large as 30%.

7. CONCLUSION
We have presented solutions to system-wide energy optimization

for periodic real-time tasks. The energy minimization is proved
to be NP-hard. We develop a pseudo-polynomial dynamic pro-
gramming solution in getting the optimal solution. A fully poly-
nomial time approximation scheme (FPTAS) is proposed to pro-
vide bounded performance guarantee with moderate running time
even for large problem size. In addition to periodic tasks, we show
that energy minimization for sporadic tasks is NP-hard in the strong
sense, which is known to have strictly exponential running time in
getting the optimal solution. However, we exploit inherent proper-
ties of the problem and show that we can have a pseudo-polynomial
algorithm for exact solutions and an FPTAS with bounded perfor-
mance guarantee. The exact solution is optimal in the sense it is on-
line without any assumption about future task releases at the time of
speed assignment decision. Evaluation results in comparison with
existing approaches for periodic tasks [7], sporadic tasks [16] show

superiority of the proposed algorithms in energy-efficiency and the
effectiveness of the approximation schemes in providing bounded
performance guarantee.

We finally point out that system-wide energy saving techniques
on task procrastination in extending shutdown intervals [7], pre-
emption control [17], and non-preemptive resources [2] can be in-
corporated into the policy. These issues are important yet beyond
the scope of this paper.
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